Self-Assembled Janus Layers on Zinc Interface to Repel Water Molecules and Polyiodides toward Long-Life Aqueous Zinc Iodine Batteries

Weicong Liang, Genyuan Ou, Bing Li, Peifen Liu, Wenju Fan, Minghui Ye, Cheng Chao Li
{"title":"Self-Assembled Janus Layers on Zinc Interface to Repel Water Molecules and Polyiodides toward Long-Life Aqueous Zinc Iodine Batteries","authors":"Weicong Liang,&nbsp;Genyuan Ou,&nbsp;Bing Li,&nbsp;Peifen Liu,&nbsp;Wenju Fan,&nbsp;Minghui Ye,&nbsp;Cheng Chao Li","doi":"10.1002/ceur.202500004","DOIUrl":null,"url":null,"abstract":"<p>Aqueous zinc iodine (Zn//I<sub>2</sub>) batteries have garnered widespread attention due to their high theoretical specific capacity and high safety. However, the corrosion of Zn metal anodes, induced by H<sub>2</sub>O molecules and polyiodides, leads to a short cycling life. Herein, 4-tert-Butylcalix[6]arene (TBCX)-based Janus molecular layers, self-assembled on Zn interface, are utilized to inhibit hydrogen evolution reaction (HER) and confine polyiodides, thereby stabilizing the Zn anode and achieving a long-life Zn//I<sub>2</sub> battery. The hydrophobic tertiary butyl (<span></span>C(CH<sub>3</sub>)<sub>3</sub>) functional groups in the TBCX layers repel H<sub>2</sub>O molecules, depressing the HER. Significantly, the H<sub>2</sub> evolution rate at the Zn@TBCX anode is reduced to 0.7 μmol h<sup>−1</sup> cm<sup>−2</sup>. Additionally, the hydroxyl (<span></span>OH) functional groups in TBCX, with their lone pair electrons, demonstrate a polar affinity for polyiodides, preventing them from reaching the Zn interface and thus suppressing Zn corrosion induced by polyiodides. Furthermore, the zincophilic TBCX layer also acts as an ionic redistributor, enabling rapid and homogeneous Zn<sup>2+</sup> flux. Owing to these attributes, the symmetric Zn@TBCX cell can cycle stably for 2200 h at 5 mA cm<sup>−2</sup>, and Zn@TBCX//I<sub>2</sub> full cells deliver an extended lifespan of 6000 cycles at 5 A g<sup>−1</sup> with a high capacity retention ratio of 98.8%.</p>","PeriodicalId":100234,"journal":{"name":"ChemistryEurope","volume":"3 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ceur.202500004","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistryEurope","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ceur.202500004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous zinc iodine (Zn//I2) batteries have garnered widespread attention due to their high theoretical specific capacity and high safety. However, the corrosion of Zn metal anodes, induced by H2O molecules and polyiodides, leads to a short cycling life. Herein, 4-tert-Butylcalix[6]arene (TBCX)-based Janus molecular layers, self-assembled on Zn interface, are utilized to inhibit hydrogen evolution reaction (HER) and confine polyiodides, thereby stabilizing the Zn anode and achieving a long-life Zn//I2 battery. The hydrophobic tertiary butyl (C(CH3)3) functional groups in the TBCX layers repel H2O molecules, depressing the HER. Significantly, the H2 evolution rate at the Zn@TBCX anode is reduced to 0.7 μmol h−1 cm−2. Additionally, the hydroxyl (OH) functional groups in TBCX, with their lone pair electrons, demonstrate a polar affinity for polyiodides, preventing them from reaching the Zn interface and thus suppressing Zn corrosion induced by polyiodides. Furthermore, the zincophilic TBCX layer also acts as an ionic redistributor, enabling rapid and homogeneous Zn2+ flux. Owing to these attributes, the symmetric Zn@TBCX cell can cycle stably for 2200 h at 5 mA cm−2, and Zn@TBCX//I2 full cells deliver an extended lifespan of 6000 cycles at 5 A g−1 with a high capacity retention ratio of 98.8%.

锌界面上的自组装Janus层排斥水分子和多碘化物,用于长寿命水性锌碘电池
含水锌碘(Zn//I2)电池因其高理论比容量和高安全性而受到广泛关注。然而,由于水分子和多碘化物的腐蚀,锌金属阳极的循环寿命较短。本文利用在Zn界面上自组装的4-叔丁基杯[6]芳烃(TBCX)基Janus分子层抑制析氢反应(HER),限制多碘化物,从而稳定Zn阳极,实现长寿命Zn//I2电池。TBCX层中的疏水叔丁基(- C(CH3)3)官能团排斥H2O分子,降低了HER。结果表明,Zn@TBCX阳极的析氢速率降低到0.7 μmol h−1 cm−2。此外,TBCX中的羟基(OH)官能团凭借其孤对电子,对多碘化物表现出极性亲和力,阻止它们到达Zn界面,从而抑制了多碘化物引起的Zn腐蚀。此外,亲锌的TBCX层还可以作为离子再分配器,使Zn2+的通量快速均匀。由于这些特性,对称的Zn@TBCX电池可以在5毫安厘米−2下稳定循环2200小时,而Zn@TBCX//I2全电池在5毫安厘米−1下可延长寿命6000次,容量保持率高达98.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信