{"title":"Hydrodynamic parameters and applications of circulating fluidized beds in wastewater treatment: A review","authors":"Aya A. Najim , Ahmed Y. Radeef","doi":"10.1016/j.partic.2025.04.018","DOIUrl":null,"url":null,"abstract":"<div><div>This review investigates the gas-liquid-solid circulating fluidized bed (GLS-CFB) technology for wastewater treatment by exploring its operational parameters and diverse applications for wastewater cleaning. The versatile CFB reactor system operates in both two-phase and three-phase modes, offering advantages for various industrial applications through distinct operational configurations. Incorporating the liquid phase into the standard gas-solid system of the three-phase GLS-CFB enables the study of reactions involving liquid media, gas-liquid interactions, and biochemical processes. These advanced features improve mass transfer and reaction control. GLS- CFB systems promote effective pollutant removal by enhancing the interaction between wastewater and treatment agents, which supports better microbial metabolism and pollutant transfer. The GLS-CFB system is efficient and compact, allowing for treating diverse wastewater types regardless of their size distribution. The novelty of this review lies in exploring the hydrodynamic properties of GLS-CFB and demonstrating its potential for scalable, efficient wastewater treatment across various industrial sectors.</div></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"102 ","pages":"Pages 190-206"},"PeriodicalIF":4.1000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200125001233","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This review investigates the gas-liquid-solid circulating fluidized bed (GLS-CFB) technology for wastewater treatment by exploring its operational parameters and diverse applications for wastewater cleaning. The versatile CFB reactor system operates in both two-phase and three-phase modes, offering advantages for various industrial applications through distinct operational configurations. Incorporating the liquid phase into the standard gas-solid system of the three-phase GLS-CFB enables the study of reactions involving liquid media, gas-liquid interactions, and biochemical processes. These advanced features improve mass transfer and reaction control. GLS- CFB systems promote effective pollutant removal by enhancing the interaction between wastewater and treatment agents, which supports better microbial metabolism and pollutant transfer. The GLS-CFB system is efficient and compact, allowing for treating diverse wastewater types regardless of their size distribution. The novelty of this review lies in exploring the hydrodynamic properties of GLS-CFB and demonstrating its potential for scalable, efficient wastewater treatment across various industrial sectors.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.