Unraveling Subthermionic Transport in One-Dimensional van der Waals Isolated-Band FETs

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL
Weiming Zhang, Kaiqi Li, Bing Wang, Yuqi Sun, Jian Zhou and Zhimei Sun*, 
{"title":"Unraveling Subthermionic Transport in One-Dimensional van der Waals Isolated-Band FETs","authors":"Weiming Zhang,&nbsp;Kaiqi Li,&nbsp;Bing Wang,&nbsp;Yuqi Sun,&nbsp;Jian Zhou and Zhimei Sun*,&nbsp;","doi":"10.1021/acs.jpclett.5c0082410.1021/acs.jpclett.5c00824","DOIUrl":null,"url":null,"abstract":"<p >A one-dimensional (1D) van der Waals material system offers an ideal platform for designing innovative devices and mitigating power consumption challenges in integrated circuits. Yet, the relationship between their electronic structure, particularly isolated-band features, and the intrinsic subthermionic transport mechanisms in 1D isolated-band-source field-effect transistors (IBS-FETs) remains underexplored. Using first-principles quantum transport simulations, we elucidated the structure–performance relationship of 1D IBS-FETs with a gate length of 7.3 nm. Our findings revealed that the dominant current mechanisms, whether tunneling or thermionic emission, are governed by isolated-band features (bandwidth and sub-bandgap), while key electronic structure parameters (bandgap and electron effective mass) shaping subthreshold and superthreshold characteristics were explicitly identified. Specifically, 1D IBS-FETs (SbSBr, SiS<sub>2</sub>, SiSe<sub>2</sub>, Se, and Te) meet International Technology Roadmap for Semiconductors requirements for high-performance and low-power devices. This study clarifies the intrinsic subthermionic electronic transport mechanisms in 1D IBS-FETs, providing critical theoretical insights for designing low-power, high-speed electronic switches.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"16 19","pages":"4698–4706 4698–4706"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c00824","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A one-dimensional (1D) van der Waals material system offers an ideal platform for designing innovative devices and mitigating power consumption challenges in integrated circuits. Yet, the relationship between their electronic structure, particularly isolated-band features, and the intrinsic subthermionic transport mechanisms in 1D isolated-band-source field-effect transistors (IBS-FETs) remains underexplored. Using first-principles quantum transport simulations, we elucidated the structure–performance relationship of 1D IBS-FETs with a gate length of 7.3 nm. Our findings revealed that the dominant current mechanisms, whether tunneling or thermionic emission, are governed by isolated-band features (bandwidth and sub-bandgap), while key electronic structure parameters (bandgap and electron effective mass) shaping subthreshold and superthreshold characteristics were explicitly identified. Specifically, 1D IBS-FETs (SbSBr, SiS2, SiSe2, Se, and Te) meet International Technology Roadmap for Semiconductors requirements for high-performance and low-power devices. This study clarifies the intrinsic subthermionic electronic transport mechanisms in 1D IBS-FETs, providing critical theoretical insights for designing low-power, high-speed electronic switches.

Abstract Image

一维范德华孤立带场效应管的亚热离子输运
一维(1D)范德华材料系统为设计创新器件和减轻集成电路中的功耗挑战提供了理想的平台。然而,它们的电子结构,特别是隔离带特征,与一维隔离带源场效应晶体管(ibs - fet)中固有的亚热离子输运机制之间的关系仍未得到充分的探讨。利用第一性原理量子输运模拟,我们阐明了栅极长度为7.3 nm的一维ibs - fet的结构-性能关系。我们的研究结果表明,主要的电流机制,无论是隧道还是热离子发射,都是由隔离带特征(带宽和子带隙)控制的,而关键的电子结构参数(带隙和电子有效质量)塑造了亚阈值和超阈值特征。具体来说,1D ibs - fet (SbSBr, SiS2, SiS2, Se和Te)符合国际半导体技术路线图对高性能和低功耗器件的要求。本研究阐明了一维ibs - fet中固有的亚热电子输运机制,为设计低功耗、高速电子开关提供了重要的理论见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信