Aakash Paul , Xiaodong Xu , Takayuki Shimizu , Michael R. Wisnom
{"title":"The effects of environmental conditions on the failure of double lap composite joints with different overlap lengths and adherend thicknesses","authors":"Aakash Paul , Xiaodong Xu , Takayuki Shimizu , Michael R. Wisnom","doi":"10.1016/j.compstruct.2025.119265","DOIUrl":null,"url":null,"abstract":"<div><div>This paper provides a comprehensive study of the effects of environmental conditions on the failure of Double Lap Joints (DLJ) with composite adherends of different overlap lengths and thicknesses. The environmental conditions tested are Room Temperature Dry (RTD), Hot Temperature Dry (HTD) and Hot Temperature Wet (HTW). The mechanical properties of both the adhesive and composite adherends were characterised at these environmental conditions, showing conflicting trends. A new way of presenting the data based on simple calculations of strength or fracture dominated failure allows all the data to be shown on a single plot, and satisfactorily explains the failure modes, failure loads and opposite trends observed for a total of 13 DLJ configurations tested at the three environmental conditions.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"367 ","pages":"Article 119265"},"PeriodicalIF":6.3000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822325004301","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
This paper provides a comprehensive study of the effects of environmental conditions on the failure of Double Lap Joints (DLJ) with composite adherends of different overlap lengths and thicknesses. The environmental conditions tested are Room Temperature Dry (RTD), Hot Temperature Dry (HTD) and Hot Temperature Wet (HTW). The mechanical properties of both the adhesive and composite adherends were characterised at these environmental conditions, showing conflicting trends. A new way of presenting the data based on simple calculations of strength or fracture dominated failure allows all the data to be shown on a single plot, and satisfactorily explains the failure modes, failure loads and opposite trends observed for a total of 13 DLJ configurations tested at the three environmental conditions.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.