Yonas I. Tekle, Atira R. Smith, Michael McGinnis, Saron Ghebezadik, Priyal Patel
{"title":"A New Paramoeba Isolate From Florida Exhibits a Microtubule-Bound Endosymbiont Closely Associated With the Host Nucleus","authors":"Yonas I. Tekle, Atira R. Smith, Michael McGinnis, Saron Ghebezadik, Priyal Patel","doi":"10.1111/jeu.70011","DOIUrl":null,"url":null,"abstract":"<p>The genera <i>Paramoeba</i> and <i>Neoparamoeba</i>, within the family Paramoebidae (order Dactylopodida), are distinguished by their dactylopodial pseudopodia and the presence of an intracellular eukaryotic symbiont, the <i>Perkinsela</i>-like organism (PLO). Taxonomic classification within these genera has been challenging due to overlapping morphological traits and close phylogenetic relationships. <i>They</i> are marine, with some playing significant roles as parasites. Notably, they have been implicated in sea urchin mass mortality events and are known causative agents of Amoebic Gill Disease (AGD) in fish. Despite their ecological and economic importance, many aspects of their diversity, biology, evolution, and host interactions remain poorly understood. In this study, we describe a novel amoeba species, <i>Paramoeba daytoni</i> n. sp., isolated from Daytona Beach, Florida. Morphological and molecular analyses confirm its placement within the <i>Paramoeba</i> clade, closely related to <i>P. eilhardi</i>, <i>P. karteshi</i>, and <i>P. aparasomata</i>. Phylogenetic assessments using 18S rDNA (18S) and Cytochrome c Oxidase I (COI) markers demonstrate the limitations of the 18S gene for species delineation, highlighting COI as a more reliable genetic marker for this group. Additionally, observations on PLO morphology, movement, and microtubule association provide insights into the endosymbiotic relationship, reinforcing the need for further research into this unique eukaryote-eukaryote symbiosis.</p>","PeriodicalId":15672,"journal":{"name":"Journal of Eukaryotic Microbiology","volume":"72 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jeu.70011","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Eukaryotic Microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jeu.70011","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The genera Paramoeba and Neoparamoeba, within the family Paramoebidae (order Dactylopodida), are distinguished by their dactylopodial pseudopodia and the presence of an intracellular eukaryotic symbiont, the Perkinsela-like organism (PLO). Taxonomic classification within these genera has been challenging due to overlapping morphological traits and close phylogenetic relationships. They are marine, with some playing significant roles as parasites. Notably, they have been implicated in sea urchin mass mortality events and are known causative agents of Amoebic Gill Disease (AGD) in fish. Despite their ecological and economic importance, many aspects of their diversity, biology, evolution, and host interactions remain poorly understood. In this study, we describe a novel amoeba species, Paramoeba daytoni n. sp., isolated from Daytona Beach, Florida. Morphological and molecular analyses confirm its placement within the Paramoeba clade, closely related to P. eilhardi, P. karteshi, and P. aparasomata. Phylogenetic assessments using 18S rDNA (18S) and Cytochrome c Oxidase I (COI) markers demonstrate the limitations of the 18S gene for species delineation, highlighting COI as a more reliable genetic marker for this group. Additionally, observations on PLO morphology, movement, and microtubule association provide insights into the endosymbiotic relationship, reinforcing the need for further research into this unique eukaryote-eukaryote symbiosis.
期刊介绍:
The Journal of Eukaryotic Microbiology publishes original research on protists, including lower algae and fungi. Articles are published covering all aspects of these organisms, including their behavior, biochemistry, cell biology, chemotherapy, development, ecology, evolution, genetics, molecular biology, morphogenetics, parasitology, systematics, and ultrastructure.