Natalie Queally, Ting Zheng, Zhiwei Ye, Kyle R. Kovach, Ryan Pavlick, Ethan Shafron, Fabian D. Schneider, Philip A. Townsend
{"title":"Functional Traits From Imaging Spectroscopy Inform Patterns of Forest Mortality During Sierra Nevada Drought","authors":"Natalie Queally, Ting Zheng, Zhiwei Ye, Kyle R. Kovach, Ryan Pavlick, Ethan Shafron, Fabian D. Schneider, Philip A. Townsend","doi":"10.1111/gcb.70246","DOIUrl":null,"url":null,"abstract":"<p>California's 2012–2016 megadrought led to the mortality of over 100 million trees. In the context of extreme drought and insect outbreaks, a holistic view of plant functional traits can provide further insight into underlying physiological and abiotic drivers of the patterns of mortality. We used new maps of early-drought (pre-mortality) foliar functional traits derived from the NASA AVIRIS-Classic imaging spectrometer, along with open-access climate, topography, canopy structure, and mortality data, to assess competing influences on drought mortality at the Soaproot Saddle and Lower Teakettle NEON sites in the southern Sierra Nevada Mountains. We aimed to (1) compare mortality trends across two independently derived mortality datasets, (2) assess trait-mortality relationships across diverse sites and species, and (3) link these relationships to mechanisms of tree-level drought response. We used random forests to assess the relative importance of mortality drivers and the trends of mortality across each predictor gradient. For the lower elevation, more water-limited Soaproot Saddle site, conifer mortality was linked to taller, drier canopies while broadleaf mortality was linked to foliar traits (lower cellulose, higher sugars, and higher leaf mass per area). For the higher elevation, more energy-limited Lower Teakettle site, mortality was more strongly linked to elevation and climate, with little influence from foliar traits.</p>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 5","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcb.70246","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70246","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
California's 2012–2016 megadrought led to the mortality of over 100 million trees. In the context of extreme drought and insect outbreaks, a holistic view of plant functional traits can provide further insight into underlying physiological and abiotic drivers of the patterns of mortality. We used new maps of early-drought (pre-mortality) foliar functional traits derived from the NASA AVIRIS-Classic imaging spectrometer, along with open-access climate, topography, canopy structure, and mortality data, to assess competing influences on drought mortality at the Soaproot Saddle and Lower Teakettle NEON sites in the southern Sierra Nevada Mountains. We aimed to (1) compare mortality trends across two independently derived mortality datasets, (2) assess trait-mortality relationships across diverse sites and species, and (3) link these relationships to mechanisms of tree-level drought response. We used random forests to assess the relative importance of mortality drivers and the trends of mortality across each predictor gradient. For the lower elevation, more water-limited Soaproot Saddle site, conifer mortality was linked to taller, drier canopies while broadleaf mortality was linked to foliar traits (lower cellulose, higher sugars, and higher leaf mass per area). For the higher elevation, more energy-limited Lower Teakettle site, mortality was more strongly linked to elevation and climate, with little influence from foliar traits.
期刊介绍:
Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health.
Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.