{"title":"Asymptotic Behaviors of Chandrasekhar Variational Problem for Neutron Stars With Slater-Type Modification","authors":"Deke Li, Qingxuan Wang","doi":"10.1111/sapm.70058","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, we consider the Chandrasekhar variational model for neutron stars with defocusing Slater-type modifications. First, we show the existence and nonexistence of the ground state <span></span><math>\n <semantics>\n <msub>\n <mi>ρ</mi>\n <mi>ε</mi>\n </msub>\n <annotation>$\\rho _{\\varepsilon }$</annotation>\n </semantics></math> by concentration–compactness method, and particularly use two auxiliary functions to prove the strongly binding inequality. Second, we characterize perturbation limit behaviors of ground states <span></span><math>\n <semantics>\n <msub>\n <mi>ρ</mi>\n <mi>ε</mi>\n </msub>\n <annotation>$\\rho _{\\varepsilon }$</annotation>\n </semantics></math> as <span></span><math>\n <semantics>\n <mrow>\n <mi>ε</mi>\n <mo>→</mo>\n <msup>\n <mn>0</mn>\n <mo>+</mo>\n </msup>\n </mrow>\n <annotation>$\\varepsilon \\rightarrow 0^+$</annotation>\n </semantics></math> and obtain two different blow-up profiles corresponding to two limit equations for <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>=</mo>\n <msub>\n <mi>N</mi>\n <mo>∗</mo>\n </msub>\n </mrow>\n <annotation>$N= N_*$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>></mo>\n <msub>\n <mi>N</mi>\n <mo>∗</mo>\n </msub>\n </mrow>\n <annotation>$N> N_*$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mi>ε</mi>\n <annotation>$\\varepsilon$</annotation>\n </semantics></math> is a parameter corresponding to Slater-type modifications, and <span></span><math>\n <semantics>\n <msub>\n <mi>N</mi>\n <mo>∗</mo>\n </msub>\n <annotation>$N_*$</annotation>\n </semantics></math> is a threshold value related to the <i>Chandrasekhar limit</i>. Finally, we study the limit behaviors for <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>≥</mo>\n <msub>\n <mi>N</mi>\n <mo>∗</mo>\n </msub>\n </mrow>\n <annotation>$N\\ge N_*$</annotation>\n </semantics></math> as <span></span><math>\n <semantics>\n <mrow>\n <mi>ε</mi>\n <mo>→</mo>\n <mo>+</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$\\varepsilon \\rightarrow +\\infty$</annotation>\n </semantics></math>, using some iterate arguments, we obtain a vanishing rate for <span></span><math>\n <semantics>\n <msub>\n <mi>ρ</mi>\n <mi>ε</mi>\n </msub>\n <annotation>$\\rho _{\\varepsilon }$</annotation>\n </semantics></math> that <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>∥</mo>\n </mrow>\n <msub>\n <mi>ρ</mi>\n <mi>ε</mi>\n </msub>\n <msub>\n <mo>∥</mo>\n <msup>\n <mi>L</mi>\n <mi>∞</mi>\n </msup>\n </msub>\n <mo>≲</mo>\n <msup>\n <mi>ε</mi>\n <mrow>\n <mo>−</mo>\n <mfrac>\n <mn>1</mn>\n <mrow>\n <mi>α</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </mfrac>\n </mrow>\n </msup>\n </mrow>\n <annotation>$\\Vert \\rho _\\varepsilon \\Vert _{L^\\infty }\\lesssim \\varepsilon ^{-\\frac{1}{\\alpha -1}}$</annotation>\n </semantics></math> as <span></span><math>\n <semantics>\n <mrow>\n <mi>ε</mi>\n <mo>→</mo>\n <mo>+</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$\\varepsilon \\rightarrow +\\infty$</annotation>\n </semantics></math> for any <span></span><math>\n <semantics>\n <mrow>\n <mn>4</mn>\n <mo>/</mo>\n <mn>3</mn>\n <mo><</mo>\n <mi>α</mi>\n <mo><</mo>\n <mo>+</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$4/3<\\alpha <+\\infty$</annotation>\n </semantics></math>. Moreover, we characterize the limit behaviors of the energy <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>E</mi>\n <mi>ε</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>N</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$E_\\varepsilon (N)$</annotation>\n </semantics></math> with respect to <span></span><math>\n <semantics>\n <mi>ε</mi>\n <annotation>$\\varepsilon$</annotation>\n </semantics></math>, and show that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>lim</mi>\n <mrow>\n <mi>ε</mi>\n <mo>→</mo>\n <mo>+</mo>\n <mi>∞</mi>\n </mrow>\n </msub>\n <msub>\n <mi>E</mi>\n <mi>ε</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>N</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mi>m</mi>\n <mi>N</mi>\n </mrow>\n <annotation>$\\lim _{\\varepsilon \\rightarrow +\\infty }E_\\varepsilon (N)=mN$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>E</mi>\n <mi>ε</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>N</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$E_\\varepsilon (N)$</annotation>\n </semantics></math> is concave and strictly monotonically increasing with respect to <span></span><math>\n <semantics>\n <mrow>\n <mi>ε</mi>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\varepsilon >0$</annotation>\n </semantics></math> in some case.</p></div>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 5","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70058","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider the Chandrasekhar variational model for neutron stars with defocusing Slater-type modifications. First, we show the existence and nonexistence of the ground state by concentration–compactness method, and particularly use two auxiliary functions to prove the strongly binding inequality. Second, we characterize perturbation limit behaviors of ground states as and obtain two different blow-up profiles corresponding to two limit equations for and , where is a parameter corresponding to Slater-type modifications, and is a threshold value related to the Chandrasekhar limit. Finally, we study the limit behaviors for as , using some iterate arguments, we obtain a vanishing rate for that as for any . Moreover, we characterize the limit behaviors of the energy with respect to , and show that , is concave and strictly monotonically increasing with respect to in some case.
期刊介绍:
Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.