Improving generalization performance of deep learning–based seismic data interpolation

IF 1.8 3区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Jiho Park, Sooyoon Kim, Soon Jee Seol, Joongmoo Byun
{"title":"Improving generalization performance of deep learning–based seismic data interpolation","authors":"Jiho Park,&nbsp;Sooyoon Kim,&nbsp;Soon Jee Seol,&nbsp;Joongmoo Byun","doi":"10.1111/1365-2478.70020","DOIUrl":null,"url":null,"abstract":"<p>Seismic data interpolation techniques are vital for preprocessing, as spatial undersampling in seismic data presents processing challenges. Recently, multiple deep learning–based interpolation techniques have emerged, each catering to distinct missing data scenarios, including regular, irregular or large gaps. However, this standardized approach can induce a creeping overfitting issue in terms of various missing types, notably undermining the generalization capability of trained deep learning models. It is worthy of serious consideration for performance generalization of deep learning–based trace interpolation in terms of various missing patterns. This study introduces an innovative approach, redefining deep learning–based seismic data interpolation to focus on enhancing generalized performance be treating unseen data. We highlight how data biases in the training dataset substantially impair interpolation performance on target data with varying features. Then we offer some guidelines to counter these biases during training dataset construction. Furthermore, we propose a versatile, single deep learning model applicable to any case of missing data in real-field situations, utilizing U-Net3+ as the backbone. Experiments using field data considering various missing scenarios reveal that our method excels in interpolating unseen target data; it does this by using an unbiased dataset, bolstering general interpolation performance. This study emphasizes the importance of a systematically designed training dataset to augment generalization in deep learning–based interpolation and indicates the need for more comprehensive research to create a universally applicable deep learning–based seismic data interpolation network for practical use.</p>","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":"73 5","pages":"1534-1551"},"PeriodicalIF":1.8000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2478.70020","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Prospecting","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.70020","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Seismic data interpolation techniques are vital for preprocessing, as spatial undersampling in seismic data presents processing challenges. Recently, multiple deep learning–based interpolation techniques have emerged, each catering to distinct missing data scenarios, including regular, irregular or large gaps. However, this standardized approach can induce a creeping overfitting issue in terms of various missing types, notably undermining the generalization capability of trained deep learning models. It is worthy of serious consideration for performance generalization of deep learning–based trace interpolation in terms of various missing patterns. This study introduces an innovative approach, redefining deep learning–based seismic data interpolation to focus on enhancing generalized performance be treating unseen data. We highlight how data biases in the training dataset substantially impair interpolation performance on target data with varying features. Then we offer some guidelines to counter these biases during training dataset construction. Furthermore, we propose a versatile, single deep learning model applicable to any case of missing data in real-field situations, utilizing U-Net3+ as the backbone. Experiments using field data considering various missing scenarios reveal that our method excels in interpolating unseen target data; it does this by using an unbiased dataset, bolstering general interpolation performance. This study emphasizes the importance of a systematically designed training dataset to augment generalization in deep learning–based interpolation and indicates the need for more comprehensive research to create a universally applicable deep learning–based seismic data interpolation network for practical use.

提高基于深度学习的地震数据插值的泛化性能
地震数据插值技术对于地震数据的预处理至关重要,因为地震数据的空间欠采样给处理带来了挑战。最近,出现了多种基于深度学习的插值技术,每种技术都适合不同的缺失数据场景,包括规则、不规则或大间隙。然而,这种标准化的方法可能会导致各种缺失类型的缓慢过拟合问题,特别是破坏训练深度学习模型的泛化能力。考虑到各种缺失模式,基于深度学习的轨迹插值的性能泛化值得认真考虑。本研究引入了一种创新的方法,重新定义了基于深度学习的地震数据插值,以提高处理未见数据的广义性能。我们强调了训练数据集中的数据偏差如何严重影响具有不同特征的目标数据的插值性能。然后,我们提供了一些指导方针,以克服训练数据集构建过程中的这些偏差。此外,我们提出了一个通用的,单一的深度学习模型,适用于任何情况下的实际情况下的数据缺失,利用U-Net3+作为骨干。考虑各种缺失场景的现场数据实验表明,我们的方法在插值未见目标数据方面表现出色;它通过使用无偏数据集来实现这一点,增强了一般的插值性能。本研究强调了系统设计的训练数据集对于增强基于深度学习的插值的泛化的重要性,并指出需要更全面的研究来创建一个普遍适用的基于深度学习的地震数据插值网络以供实际使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geophysical Prospecting
Geophysical Prospecting 地学-地球化学与地球物理
CiteScore
4.90
自引率
11.50%
发文量
118
审稿时长
4.5 months
期刊介绍: Geophysical Prospecting publishes the best in primary research on the science of geophysics as it applies to the exploration, evaluation and extraction of earth resources. Drawing heavily on contributions from researchers in the oil and mineral exploration industries, the journal has a very practical slant. Although the journal provides a valuable forum for communication among workers in these fields, it is also ideally suited to researchers in academic geophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信