With the development of aviation engine technology, the temperature in the lubricating system continues to rise. It is expected that aviation lubricating oils should have excellent thermal-oxidative stability. The high-temperature deposit and oil degradation characteristic test is adopted to evaluate the thermal stability of aviation lubricating oils in the performance specifications. In this study, a high-temperature bearing test machine was established first, and two typical aviation lubricating oils were measured by this developed test machine. The thermal-oxidative processes and ageing mechanisms of the aviation lubricating oils in the high-temperature bearing test were analysed. Moreover, the extreme-pressure and anti-wear performances of the aviation lubricating oils before and after the bearing test were studied. Experimental results indicated that the established high-temperature bearing test machine had good discriminability, and the high-temperature bearing test could meet the standard method requirements. Viscosity and total acid number (TAN) of the two aviation lubricating oils gradually increased with the high-temperature bearing test time. Antioxidants and anti-wear and extreme-pressure additives were consumed during the bearing test. Compared with dioctyldiphenylamine (DODPA), the antioxidant additive n-phenyl-α-naphthylamine (α-NPA) exhibited higher antioxidant activity under test conditions. The thermal-oxidative degradation of the aviation lubricating oils involved complex physical and chemical processes. The effects of the thermal oxidation on the extreme-pressure and anti-wear performances of the two aviation lubricating oils were significantly different.