Single tin-vacancy center in nanoscale diamond

IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Masanori Fujiwara, Masanao Ohori, Frederick Tze Kit So, Yuto Makino, Naoya Morioka, Izuru Ohki, Ryuji Igarashi, Masahiro Nishikawa, Norikazu Mizuochi
{"title":"Single tin-vacancy center in nanoscale diamond","authors":"Masanori Fujiwara,&nbsp;Masanao Ohori,&nbsp;Frederick Tze Kit So,&nbsp;Yuto Makino,&nbsp;Naoya Morioka,&nbsp;Izuru Ohki,&nbsp;Ryuji Igarashi,&nbsp;Masahiro Nishikawa,&nbsp;Norikazu Mizuochi","doi":"10.1186/s11671-025-04256-0","DOIUrl":null,"url":null,"abstract":"<div><p>Group-IV color centers in diamonds are promising not only as spin–photon interfaces for quantum networks but also as multicolor photoluminescence probes and all-optical temperature sensors for biological research. Therefore, generating group-IV color centers in detonation nanodiamonds (DNDs), the smallest class of diamond nanocrystals, has become a research focal point. This approach holds potential for the noninvasive introduction of diamond sensors into living cell organelles, enabling sensing of local structural and temperature changes with minimal disturbance. Following the successful generation of silicon- and germanium-vacancy centers in DNDs, the generation of tin-vacancy (SnV) centers was investigated. Similar to other group-IV color centers, the SnV centers exhibit strong photoluminescence. In addition, the SnV center offers a long spin coherence time compared with those of silicon- and germanium-vacancy centers. However, the strain induced by large Sn atoms poses substantial challenges for generating SnV centers in ultrasmall nanodiamonds. In this study, Sn-doped DNDs with a mean particle size of ~ 5 nm were subjected to a 3 days boiling acid treatment, which led to sharp zero-phonon lines of SnV centers at ~ 620 nm in the photoluminescence spectra. Photon autocorrelation measurements further revealed the presence of single SnV centers in these DNDs.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04256-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-025-04256-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Group-IV color centers in diamonds are promising not only as spin–photon interfaces for quantum networks but also as multicolor photoluminescence probes and all-optical temperature sensors for biological research. Therefore, generating group-IV color centers in detonation nanodiamonds (DNDs), the smallest class of diamond nanocrystals, has become a research focal point. This approach holds potential for the noninvasive introduction of diamond sensors into living cell organelles, enabling sensing of local structural and temperature changes with minimal disturbance. Following the successful generation of silicon- and germanium-vacancy centers in DNDs, the generation of tin-vacancy (SnV) centers was investigated. Similar to other group-IV color centers, the SnV centers exhibit strong photoluminescence. In addition, the SnV center offers a long spin coherence time compared with those of silicon- and germanium-vacancy centers. However, the strain induced by large Sn atoms poses substantial challenges for generating SnV centers in ultrasmall nanodiamonds. In this study, Sn-doped DNDs with a mean particle size of ~ 5 nm were subjected to a 3 days boiling acid treatment, which led to sharp zero-phonon lines of SnV centers at ~ 620 nm in the photoluminescence spectra. Photon autocorrelation measurements further revealed the presence of single SnV centers in these DNDs.

纳米金刚石中的单锡空位中心
钻石中的iv族色中心不仅可以作为量子网络的自旋光子界面,而且可以作为生物研究中的多色光致发光探针和全光温度传感器。因此,在最小的一类金刚石纳米晶体——爆轰纳米金刚石(dnd)中生成iv族色心已成为研究热点。这种方法具有将金刚石传感器无创引入活细胞器的潜力,能够以最小的干扰感知局部结构和温度变化。在成功生成硅和锗空位中心后,研究了锡空位(SnV)中心的生成。与其他iv族色中心类似,SnV中心表现出强烈的光致发光。此外,与硅和锗空位中心相比,SnV中心具有较长的自旋相干时间。然而,由大Sn原子引起的应变对在超小纳米金刚石中产生SnV中心提出了实质性的挑战。在本研究中,对平均粒径为~ 5 nm的掺锡dnd进行了3天的沸酸处理,在~ 620 nm的光致发光光谱中,SnV中心出现了尖锐的零声子线。光子自相关测量进一步揭示了这些dnd中存在单个SnV中心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters 工程技术-材料科学:综合
CiteScore
11.30
自引率
0.00%
发文量
110
审稿时长
48 days
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信