Combinatorial proof of a non-renormalization theorem

IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy
Paul-Hermann Balduf, Davide Gaiotto
{"title":"Combinatorial proof of a non-renormalization theorem","authors":"Paul-Hermann Balduf,&nbsp;Davide Gaiotto","doi":"10.1007/JHEP05(2025)120","DOIUrl":null,"url":null,"abstract":"<p>We provide a direct combinatorial proof of a Feynman graph identity which implies a wide generalization of a formality theorem by Kontsevich. For a Feynman graph Γ, we associate to each vertex a position <i>x</i><sub><i>v</i></sub> ∈ <i>ℝ</i> and to each edge <i>e</i> the combination <span>\\( {s}_e={a}_e^{-\\frac{1}{2}}\\left({x}_e^{+}-{x}_e^{-}\\right) \\)</span>, where <span>\\( {x}_e^{\\pm } \\)</span> are the positions of the two end vertices of <i>e</i>, and <i>a</i><sub><i>e</i></sub> is a Schwinger parameter. The “topological propagator” <span>\\( {P}_e={e}^{-{s}_e^2}{\\textrm{d}s}_e \\)</span> includes a part proportional to d<i>x</i><sub><i>v</i></sub> and a part proportional to d<i>a</i><sub><i>e</i></sub>. Integrating the product of all <i>P</i><sub><i>e</i></sub> over positions produces a differential form <i>α</i><sub>Γ</sub> in the variables <i>a</i><sub><i>e</i></sub>. We derive an explicit combinatorial formula for <i>α</i><sub>Γ</sub>, and we prove that <i>α</i><sub>Γ</sub> ∧ <i>α</i><sub>Γ</sub> = 0 for all graphs except for trees.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 5","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)120.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP05(2025)120","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We provide a direct combinatorial proof of a Feynman graph identity which implies a wide generalization of a formality theorem by Kontsevich. For a Feynman graph Γ, we associate to each vertex a position xv and to each edge e the combination \( {s}_e={a}_e^{-\frac{1}{2}}\left({x}_e^{+}-{x}_e^{-}\right) \), where \( {x}_e^{\pm } \) are the positions of the two end vertices of e, and ae is a Schwinger parameter. The “topological propagator” \( {P}_e={e}^{-{s}_e^2}{\textrm{d}s}_e \) includes a part proportional to dxv and a part proportional to dae. Integrating the product of all Pe over positions produces a differential form αΓ in the variables ae. We derive an explicit combinatorial formula for αΓ, and we prove that αΓαΓ = 0 for all graphs except for trees.

非重整化定理的组合证明
本文给出了一个费曼图恒等式的直接组合证明,它包含了孔采维奇形式定理的广泛推广。对于费曼图Γ,我们给每个顶点关联一个位置xv∈∈,给每个边e关联一个组合\( {s}_e={a}_e^{-\frac{1}{2}}\left({x}_e^{+}-{x}_e^{-}\right) \),其中\( {x}_e^{\pm } \)是e的两个端点的位置,ae是一个Schwinger参数。“拓扑传播子”\( {P}_e={e}^{-{s}_e^2}{\textrm{d}s}_e \)包括与dxv成比例的部分和与dae成比例的部分。对所有Pe除以位置的乘积积分得到变量ae的微分形式αΓ。我们导出了αΓ的显式组合公式,并证明了除树外的所有图的αΓ∧αΓ = 0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信