Utilizing Industrial Wastewater for Cultivation of Chlorella vulgaris NIES-227: A Study on Biodiesel Yield Optimization with Alkali Catalysts

IF 3.8 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Sonika Kumari, Vinod Kumar, Richa Kothari, Pankaj Kumar
{"title":"Utilizing Industrial Wastewater for Cultivation of Chlorella vulgaris NIES-227: A Study on Biodiesel Yield Optimization with Alkali Catalysts","authors":"Sonika Kumari,&nbsp;Vinod Kumar,&nbsp;Richa Kothari,&nbsp;Pankaj Kumar","doi":"10.1007/s11270-025-08093-w","DOIUrl":null,"url":null,"abstract":"<div><p>Microalgae, ubiquitous in diverse aquatic ecosystems, present a promising avenue for energy generation through cultivation. This study focused on the cultivation of indigenous <i>Chlorella vulgaris</i> using both dairy wastewater (DWW) and pharmaceutical industry wastewater (PIWW) to ascertain its viability for biodiesel production. The results showed that biodiesel yields of 78% and 76% were attained from <i>C. vulgaris</i> biomass cultivated using DWW utilizing potassium hydroxide (KOH) and sodium hydroxide (NaOH) catalysts, respectively. The results demonstrated its efficacy in wastewater treatment, with removal efficiencies of 63–60% for total dissolved solids (TDS), 82–93% for biochemical oxygen demand (BOD), 73–85% for chemical oxygen demand (COD), 80% for total Kjeldahl nitrogen (TKN), and 82–88% for total phosphorus (TP), complementing biodiesel production. This dual-purpose approach emphasizes the potential of microalgae for realizing sustainable solutions at the intersection of environmental management and bioenergy production.</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"236 7","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-025-08093-w","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Microalgae, ubiquitous in diverse aquatic ecosystems, present a promising avenue for energy generation through cultivation. This study focused on the cultivation of indigenous Chlorella vulgaris using both dairy wastewater (DWW) and pharmaceutical industry wastewater (PIWW) to ascertain its viability for biodiesel production. The results showed that biodiesel yields of 78% and 76% were attained from C. vulgaris biomass cultivated using DWW utilizing potassium hydroxide (KOH) and sodium hydroxide (NaOH) catalysts, respectively. The results demonstrated its efficacy in wastewater treatment, with removal efficiencies of 63–60% for total dissolved solids (TDS), 82–93% for biochemical oxygen demand (BOD), 73–85% for chemical oxygen demand (COD), 80% for total Kjeldahl nitrogen (TKN), and 82–88% for total phosphorus (TP), complementing biodiesel production. This dual-purpose approach emphasizes the potential of microalgae for realizing sustainable solutions at the intersection of environmental management and bioenergy production.

利用工业废水培养小球藻NIES-227:碱催化剂优化生物柴油产率的研究
微藻普遍存在于各种水生生态系统中,是一种很有前途的能源生产途径。本研究主要利用乳业废水(DWW)和制药工业废水(PIWW)培养本土小球藻(Chlorella vulgaris),以确定其生产生物柴油的可行性。结果表明,在氢氧化钾(KOH)和氢氧化钠(NaOH)催化剂的催化下,用DWW培养的C. vulgaris生物质的生物柴油产率分别为78%和76%。结果表明,该工艺对废水的去除率为:总溶解固形物(TDS)去除率63 ~ 60%,生化需氧量(BOD)去除率82 ~ 93%,化学需氧量(COD)去除率73 ~ 85%,总凯氏定氮(TKN)去除率80%,总磷(TP)去除率82 ~ 88%。这种双重目的的方法强调了微藻在环境管理和生物能源生产交叉领域实现可持续解决方案的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Water, Air, & Soil Pollution
Water, Air, & Soil Pollution 环境科学-环境科学
CiteScore
4.50
自引率
6.90%
发文量
448
审稿时长
2.6 months
期刊介绍: Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments. Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation. Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信