{"title":"Broad-spectrum antimicrobial effects of hydrogen boride nanosheets†","authors":"Takeshi Nagai, Andi Mauliana, Keiichi Kobayashi, Akira Yamaguchi, Keisuke Miyazaki, Yue Yang, Jumpei Takeshita, Takeshi Fujita, Kayano Sunada, Hitoshi Ishiguro, Takahiro Kondo and Masahiro Miyauchi","doi":"10.1039/D4TB02854F","DOIUrl":null,"url":null,"abstract":"<p >Hydrogen boride (HB) nanosheets are novel 2D materials that have found application in various fields such as electronics, energy storage, and catalysis. The present study describes the novel antimicrobial effects of HB nanosheets. Transparent thin films of HB coated on a glass substrate inactivate pathogens, such as the omicron variant of SARS-CoV-2, influenza virus, feline calicivirus, and bacteriophages. The infectious titer of these microbes decreases to the detection limit within 10 min in the dark at room temperature. The antiviral function of the HB nanosheets is retained in the absence of moisture, mimicking the environment of dry surfaces. The HB nanosheets also inactivate bacteria and fungi such as <em>Escherichia coli</em>, <em>Staphylococcus aureus</em>, <em>Aspergillus niger</em>, and <em>Penicillium pinophilum</em>. We discussed the mechanism of the broad-spectrum antimicrobial function of HB nanosheets based on the physicochemical properties of HB nanosheets. Denaturation of microbial agents is derived from strong physicochemical interactions between the protein molecules in the pathogens and the surface of the HB films. The present study reports important new properties of HB nanosheets and demonstrates their utility in protecting against the spread of disease on a pandemic scale.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 19","pages":" 5723-5733"},"PeriodicalIF":6.1000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb02854f","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen boride (HB) nanosheets are novel 2D materials that have found application in various fields such as electronics, energy storage, and catalysis. The present study describes the novel antimicrobial effects of HB nanosheets. Transparent thin films of HB coated on a glass substrate inactivate pathogens, such as the omicron variant of SARS-CoV-2, influenza virus, feline calicivirus, and bacteriophages. The infectious titer of these microbes decreases to the detection limit within 10 min in the dark at room temperature. The antiviral function of the HB nanosheets is retained in the absence of moisture, mimicking the environment of dry surfaces. The HB nanosheets also inactivate bacteria and fungi such as Escherichia coli, Staphylococcus aureus, Aspergillus niger, and Penicillium pinophilum. We discussed the mechanism of the broad-spectrum antimicrobial function of HB nanosheets based on the physicochemical properties of HB nanosheets. Denaturation of microbial agents is derived from strong physicochemical interactions between the protein molecules in the pathogens and the surface of the HB films. The present study reports important new properties of HB nanosheets and demonstrates their utility in protecting against the spread of disease on a pandemic scale.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices