Fouzia Kalim, Gandhi Sivaraman, Himanshu Vankhede, Arati Ramesh, Sufi O. Raja and Akash Gulyani
{"title":"A red-shifted donor–acceptor hemicyanine-based probe for mitochondrial pH in live cells†","authors":"Fouzia Kalim, Gandhi Sivaraman, Himanshu Vankhede, Arati Ramesh, Sufi O. Raja and Akash Gulyani","doi":"10.1039/D4TB01839G","DOIUrl":null,"url":null,"abstract":"<p >pH dynamically regulates diverse cellular functions and processes. At the inner mitochondrial membrane (IMM), nanoscale pH gradients generated by the electron transport chain (ETC) play a critical role in contributing to mitochondrial membrane potential that drives ATP synthesis and thermogenesis. However, tools to decouple pH gradients from the overall IMM potential in living cells are limited. This study integrates a fluorescent “benzo-indole” chromophore with a pH-sensitive “phenol” moiety into a single covalent skeleton to build a sensitive, red-shifted, cell-permeable pH probe (Mito-pH2). Mito-pH2 localizes inside mitochondria with high specificity presumably to the mitochondrial inner membrane by virtue of being an amphiphilic cation and can report dynamic changes in mitochondrial pH in living cells. Our design ensures that Mito-pH2 exhibits pH-sensitive dual-excitation and dual-emission peaks enabling ratiometric pH-sensing. Furthermore, Mito-pH2 reports an increase in pH in the pH range of 3–9 through a striking colour change from yellow to purple making it a sensitive all-purpose colorimetric pH probe. A combination of DFT calculations and spectroscopy shed light on likely sensing mechanisms including photophysics. Quantitative live-cell fluorescence imaging reveals that Mito-pH2 can detect dynamic changes in mitochondrial pH upon extracellular pH modulation with little or no measurable cytotoxicity during live imaging. Red-emitting Mito-pH2 opens new avenues of quantitative mapping of physiological mitochondrial membrane pH and significantly enhances the repertoire of environment-sensitive and low-toxicity mitochondrial probes that link mitochondrial state and micro-environment.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 19","pages":" 5550-5557"},"PeriodicalIF":6.1000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb01839g","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
pH dynamically regulates diverse cellular functions and processes. At the inner mitochondrial membrane (IMM), nanoscale pH gradients generated by the electron transport chain (ETC) play a critical role in contributing to mitochondrial membrane potential that drives ATP synthesis and thermogenesis. However, tools to decouple pH gradients from the overall IMM potential in living cells are limited. This study integrates a fluorescent “benzo-indole” chromophore with a pH-sensitive “phenol” moiety into a single covalent skeleton to build a sensitive, red-shifted, cell-permeable pH probe (Mito-pH2). Mito-pH2 localizes inside mitochondria with high specificity presumably to the mitochondrial inner membrane by virtue of being an amphiphilic cation and can report dynamic changes in mitochondrial pH in living cells. Our design ensures that Mito-pH2 exhibits pH-sensitive dual-excitation and dual-emission peaks enabling ratiometric pH-sensing. Furthermore, Mito-pH2 reports an increase in pH in the pH range of 3–9 through a striking colour change from yellow to purple making it a sensitive all-purpose colorimetric pH probe. A combination of DFT calculations and spectroscopy shed light on likely sensing mechanisms including photophysics. Quantitative live-cell fluorescence imaging reveals that Mito-pH2 can detect dynamic changes in mitochondrial pH upon extracellular pH modulation with little or no measurable cytotoxicity during live imaging. Red-emitting Mito-pH2 opens new avenues of quantitative mapping of physiological mitochondrial membrane pH and significantly enhances the repertoire of environment-sensitive and low-toxicity mitochondrial probes that link mitochondrial state and micro-environment.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices