Ran Bi , Jingyi Liu , Yuyao Cai , Shuangning Zhang , Maonan Lu , Chenxi Du , Mengyuan Liu , Xinyu Ding , Ke Xiao , Si Li , Tingting Jiang , Shidong Xiang
{"title":"Dual-atom nanozymes: Synthesis, characterization, catalytic mechanism and biomedical applications","authors":"Ran Bi , Jingyi Liu , Yuyao Cai , Shuangning Zhang , Maonan Lu , Chenxi Du , Mengyuan Liu , Xinyu Ding , Ke Xiao , Si Li , Tingting Jiang , Shidong Xiang","doi":"10.1016/j.colsurfb.2025.114774","DOIUrl":null,"url":null,"abstract":"<div><div>Dual-atom nanozymes (DAzymes), a novel class of nanozymes featuring dual-metal atomic active centers, mimic the multi-metal synergistic mechanisms of natural enzymes to achieve superior catalytic activity compared to conventional single-atom nanozymes. Their unique dual-atom architecture not only effectively mitigates metal atom aggregation but also significantly enhances substrate adsorption capacity and catalytic efficiency through interatomic electronic coupling and spatial synergy. This structural innovation addresses critical limitations of single-atom nanozymes, including low metal loading and homogeneous active sites. This review systematically summarizes recent advancements in DAzymes: First, we elucidate their design principles and structural advantages, with a focus on precise synthesis strategies (e.g., spatial confinement, coordination stabilization) and atomic-level characterization techniques (e.g., synchrotron radiation-based X-ray absorption spectroscopy, spherical aberration-corrected electron microscopy). By unraveling structure-activity relationships, we clarify the multi-dimensional regulatory mechanisms of dual-atom systems—including coordination environments, electronic coupling, and spatial configurations—on redox enzyme-like activities such as peroxidase and superoxide dismutase mimics. Furthermore, we elaborate on their groundbreaking biomedical applications, including antibacterial and antitumor therapies via reactive oxygen species (ROS) regulation, antioxidant damage repair, and biosensing. This review aims to provide theoretical guidance for the rational design of high-performance DAzymes and to advance their translational applications in precision medicine and intelligent biomaterials.</div></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"253 ","pages":"Article 114774"},"PeriodicalIF":5.4000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776525002814","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Dual-atom nanozymes (DAzymes), a novel class of nanozymes featuring dual-metal atomic active centers, mimic the multi-metal synergistic mechanisms of natural enzymes to achieve superior catalytic activity compared to conventional single-atom nanozymes. Their unique dual-atom architecture not only effectively mitigates metal atom aggregation but also significantly enhances substrate adsorption capacity and catalytic efficiency through interatomic electronic coupling and spatial synergy. This structural innovation addresses critical limitations of single-atom nanozymes, including low metal loading and homogeneous active sites. This review systematically summarizes recent advancements in DAzymes: First, we elucidate their design principles and structural advantages, with a focus on precise synthesis strategies (e.g., spatial confinement, coordination stabilization) and atomic-level characterization techniques (e.g., synchrotron radiation-based X-ray absorption spectroscopy, spherical aberration-corrected electron microscopy). By unraveling structure-activity relationships, we clarify the multi-dimensional regulatory mechanisms of dual-atom systems—including coordination environments, electronic coupling, and spatial configurations—on redox enzyme-like activities such as peroxidase and superoxide dismutase mimics. Furthermore, we elaborate on their groundbreaking biomedical applications, including antibacterial and antitumor therapies via reactive oxygen species (ROS) regulation, antioxidant damage repair, and biosensing. This review aims to provide theoretical guidance for the rational design of high-performance DAzymes and to advance their translational applications in precision medicine and intelligent biomaterials.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.