Lidong Cui , Nathan Spinks , Nataliia Y. Sergiienko , Danica Tothova , Justin S. Leontini , Benjamin S. Cazzolato , Richard Manasseh
{"title":"Helmholtz-type resonator with increased tunability and reduced viscous loss with application to wave energy converters","authors":"Lidong Cui , Nathan Spinks , Nataliia Y. Sergiienko , Danica Tothova , Justin S. Leontini , Benjamin S. Cazzolato , Richard Manasseh","doi":"10.1016/j.oceaneng.2025.121432","DOIUrl":null,"url":null,"abstract":"<div><div>Wave-energy converters such as Oscillating Water Columns (OWCs) are designed to resonate at ocean-wave frequencies to extract renewable energy, but the low frequencies of the energetic waves demand large, expensive devices. To resolve this predicament, smaller-sized Helmholtz OWCs (H-OWCs) were designed. Their small sizes are achieved by reducing the cross-sectional area of their entrance sections. However, this leads to viscous losses at the transition between an H-OWC’s entrance and main sections. Moreover, an H-OWC is difficult to tune due to its fixed geometry. This paper proposes a modified H-OWC, called an I-OWC. Its main innovation is to use an “insert” placed in a chamber to reduce the cross-sectional area of the entrance section, avoiding the transition in an H-OWC to reduce vortex damping. Another benefit of the I-OWC is an increased tunability <em>via</em> changing the length of the insert in the chamber. A model of I-OWC is designed semi-analytically; the method is validated by wave flume tests. A conceptual design of a full-scale I-OWC is then proposed. In a broader sense, the design provides an alternative approach to tuning the frequency of a general Helmholtz-type resonating cavity.</div></div>","PeriodicalId":19403,"journal":{"name":"Ocean Engineering","volume":"333 ","pages":"Article 121432"},"PeriodicalIF":5.5000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002980182501145X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Wave-energy converters such as Oscillating Water Columns (OWCs) are designed to resonate at ocean-wave frequencies to extract renewable energy, but the low frequencies of the energetic waves demand large, expensive devices. To resolve this predicament, smaller-sized Helmholtz OWCs (H-OWCs) were designed. Their small sizes are achieved by reducing the cross-sectional area of their entrance sections. However, this leads to viscous losses at the transition between an H-OWC’s entrance and main sections. Moreover, an H-OWC is difficult to tune due to its fixed geometry. This paper proposes a modified H-OWC, called an I-OWC. Its main innovation is to use an “insert” placed in a chamber to reduce the cross-sectional area of the entrance section, avoiding the transition in an H-OWC to reduce vortex damping. Another benefit of the I-OWC is an increased tunability via changing the length of the insert in the chamber. A model of I-OWC is designed semi-analytically; the method is validated by wave flume tests. A conceptual design of a full-scale I-OWC is then proposed. In a broader sense, the design provides an alternative approach to tuning the frequency of a general Helmholtz-type resonating cavity.
期刊介绍:
Ocean Engineering provides a medium for the publication of original research and development work in the field of ocean engineering. Ocean Engineering seeks papers in the following topics.