On the embedding of weighted Sobolev spaces with applications to a planar nonlinear Schrödinger equation

IF 1.2 3区 数学 Q1 MATHEMATICS
Antonio Azzollini , Alessio Pomponio , Simone Secchi
{"title":"On the embedding of weighted Sobolev spaces with applications to a planar nonlinear Schrödinger equation","authors":"Antonio Azzollini ,&nbsp;Alessio Pomponio ,&nbsp;Simone Secchi","doi":"10.1016/j.jmaa.2025.129652","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we study the embedding's properties for the weighted Sobolev space <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></math></span> into the Lebesgue weighted space <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>W</mi></mrow><mrow><mi>τ</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></math></span>. Here <em>V</em> and <em>W</em> are diverging weight functions. The different behaviour of <em>V</em> with respect to <em>W</em> at infinity plays a crucial role. Particular attention is paid to the case <span><math><mi>V</mi><mo>=</mo><mi>W</mi></math></span>. This situation is very delicate since it depends strongly on the dimension and, in particular, <span><math><mi>N</mi><mo>=</mo><mn>2</mn></math></span> is somewhat a limit case. As an application, an existence result for a planar nonlinear Schrödinger equation in presence of coercive potentials is provided.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129652"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25004330","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we study the embedding's properties for the weighted Sobolev space HV1(RN) into the Lebesgue weighted space LWτ(RN). Here V and W are diverging weight functions. The different behaviour of V with respect to W at infinity plays a crucial role. Particular attention is paid to the case V=W. This situation is very delicate since it depends strongly on the dimension and, in particular, N=2 is somewhat a limit case. As an application, an existence result for a planar nonlinear Schrödinger equation in presence of coercive potentials is provided.
加权Sobolev空间嵌入在平面非线性Schrödinger方程中的应用
本文研究了加权Sobolev空间HV1(RN)在Lebesgue加权空间LWτ(RN)中的嵌入性质。这里V和W是发散的权函数。V在无穷远处相对于W的不同行为起着至关重要的作用。特别注意的是V=W的情况。这种情况非常微妙,因为它强烈依赖于维度,特别是,N=2在某种程度上是一种极限情况。作为应用,给出了平面非线性Schrödinger方程在矫顽力作用下的存在性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信