Blue diode pumping: unveiling the potential for deep-red Ho3+-doped fluoride fiber lasers

IF 2.2 3区 物理与天体物理 Q2 OPTICS
Peng Wang , Xindie Chen , Wei Shi , Yaolin Fei , Yao Ma , Liujing Xu , Dawid Piatkowski , Wensong Li
{"title":"Blue diode pumping: unveiling the potential for deep-red Ho3+-doped fluoride fiber lasers","authors":"Peng Wang ,&nbsp;Xindie Chen ,&nbsp;Wei Shi ,&nbsp;Yaolin Fei ,&nbsp;Yao Ma ,&nbsp;Liujing Xu ,&nbsp;Dawid Piatkowski ,&nbsp;Wensong Li","doi":"10.1016/j.optcom.2025.131983","DOIUrl":null,"url":null,"abstract":"<div><div>Blue laser diodes (LDs) have gained significant attention as cost-effective pump sources for efficient visible rare-earth (RE) doped fiber lasers, owing to their high power and brightness. In this study, we investigate the potential of blue LDs as pump sources for deep-red holmium-doped fluorozirconate glass (Ho:ZrF<sub>4</sub>) fiber lasers. We report, for the first time, watt-level, high-efficiency operation of a 75X nm Ho:ZrF<sub>4</sub> fiber laser directly pumped by 442 nm LDs. This diode-pumped laser achieved a record output power of 1.04 W, with a maximum slope efficiency of about 53 % for a 25-cm long fiber—corresponding to approximately 90 % of the Stokes efficiency limit. Additionally, we demonstrate the shortest cavity length ever used for a deep-red fiber laser: several centimeters level 75X nm cavity fiber laser pumped by blue LDs. Operating under dual-wavelength pumping at 442 and 449 nm, this laser achieved an output power of 0.15 W and a slope efficiency of 15 % with respect to the 442 nm pump power. The experimental results are in close agreement with numerical model used to optimize all cavity configurations.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"589 ","pages":"Article 131983"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030401825005115","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Blue laser diodes (LDs) have gained significant attention as cost-effective pump sources for efficient visible rare-earth (RE) doped fiber lasers, owing to their high power and brightness. In this study, we investigate the potential of blue LDs as pump sources for deep-red holmium-doped fluorozirconate glass (Ho:ZrF4) fiber lasers. We report, for the first time, watt-level, high-efficiency operation of a 75X nm Ho:ZrF4 fiber laser directly pumped by 442 nm LDs. This diode-pumped laser achieved a record output power of 1.04 W, with a maximum slope efficiency of about 53 % for a 25-cm long fiber—corresponding to approximately 90 % of the Stokes efficiency limit. Additionally, we demonstrate the shortest cavity length ever used for a deep-red fiber laser: several centimeters level 75X nm cavity fiber laser pumped by blue LDs. Operating under dual-wavelength pumping at 442 and 449 nm, this laser achieved an output power of 0.15 W and a slope efficiency of 15 % with respect to the 442 nm pump power. The experimental results are in close agreement with numerical model used to optimize all cavity configurations.
蓝色二极管泵浦:揭示深红色掺Ho3+氟化物光纤激光器的潜力
蓝色激光二极管(ld)由于其高功率和高亮度,作为高效可见稀土(RE)掺杂光纤激光器的低成本泵浦源,受到了广泛的关注。在这项研究中,我们研究了蓝色ld作为深红色掺钬氟锆酸盐玻璃(Ho:ZrF4)光纤激光器的泵浦源的潜力。本文首次报道了由442 nm ld直接泵浦的75X nm Ho:ZrF4光纤激光器的瓦级、高效率运行。这种二极管泵浦激光器的输出功率达到了创纪录的1.04 W,对于25厘米长的光纤,最大斜率效率约为53%,相当于斯托克斯效率极限的约90%。此外,我们展示了迄今为止用于深红色光纤激光器的最短腔长:由蓝色ld泵浦的几厘米级75X nm腔光纤激光器。在442和449 nm的双波长泵浦下工作,该激光器的输出功率为0.15 W,相对于442 nm泵浦功率的斜率效率为15%。实验结果与用于优化所有空腔结构的数值模型非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics Communications
Optics Communications 物理-光学
CiteScore
5.10
自引率
8.30%
发文量
681
审稿时长
38 days
期刊介绍: Optics Communications invites original and timely contributions containing new results in various fields of optics and photonics. The journal considers theoretical and experimental research in areas ranging from the fundamental properties of light to technological applications. Topics covered include classical and quantum optics, optical physics and light-matter interactions, lasers, imaging, guided-wave optics and optical information processing. Manuscripts should offer clear evidence of novelty and significance. Papers concentrating on mathematical and computational issues, with limited connection to optics, are not suitable for publication in the Journal. Similarly, small technical advances, or papers concerned only with engineering applications or issues of materials science fall outside the journal scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信