Kinetic and thermodynamic analyses of pyrolysis of finger millet (Eleusine coracana) straw through both model-free and model-based methods and application of ANN-based machine learning model to predict thermal degradation

Q1 Environmental Science
Ankita Tagade , Saurav Kandpal, Sanjay Singh, Ashish N. Sawarkar
{"title":"Kinetic and thermodynamic analyses of pyrolysis of finger millet (Eleusine coracana) straw through both model-free and model-based methods and application of ANN-based machine learning model to predict thermal degradation","authors":"Ankita Tagade ,&nbsp;Saurav Kandpal,&nbsp;Sanjay Singh,&nbsp;Ashish N. Sawarkar","doi":"10.1016/j.biteb.2025.102139","DOIUrl":null,"url":null,"abstract":"<div><div>Present study provides crucial insights on thermal degradation of finger millet straw (FMS) at various stages of devolatilization and in-depth kinetic and thermodynamic analyses together with artificial neural network (ANN) modeling. A combined approach utilizing both model-free methods, viz. Kissinger-Akahira-Sunose (KAS), Flynn-Wall-Ozawa (FWO), Friedman, Starink, and Vyazovkin, and a model-fitting method, namely, distributed activation energy model (DAEM), was explored to analyze the kinetics. Results envisaged that average activation energy for FMS pyrolysis ranged between 167 and 175 kJ/mol. One-way ANOVA technique revealed no significant deviation in activation energies obtained through various methods. Master plots revealed that FMS pyrolysis followed first order (R1) for α &lt; 0.5 and two-dimensional diffusion (D2), Ginstling-Brounshtein (D4), and power law (P4) models for α &gt; 0.5. Estimated thermodynamic parameters (ΔH ≈ 164 kJ/mol and ΔG ≈ 169 kJ/mol) confirmed viability of FMS pyrolysis. ANN-based model yielded a test R<sup>2</sup> of 0.994 and low mean squared error of 0.684 for predicting weight loss during FMS pyrolysis.</div></div>","PeriodicalId":8947,"journal":{"name":"Bioresource Technology Reports","volume":"30 ","pages":"Article 102139"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589014X25001215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Present study provides crucial insights on thermal degradation of finger millet straw (FMS) at various stages of devolatilization and in-depth kinetic and thermodynamic analyses together with artificial neural network (ANN) modeling. A combined approach utilizing both model-free methods, viz. Kissinger-Akahira-Sunose (KAS), Flynn-Wall-Ozawa (FWO), Friedman, Starink, and Vyazovkin, and a model-fitting method, namely, distributed activation energy model (DAEM), was explored to analyze the kinetics. Results envisaged that average activation energy for FMS pyrolysis ranged between 167 and 175 kJ/mol. One-way ANOVA technique revealed no significant deviation in activation energies obtained through various methods. Master plots revealed that FMS pyrolysis followed first order (R1) for α < 0.5 and two-dimensional diffusion (D2), Ginstling-Brounshtein (D4), and power law (P4) models for α > 0.5. Estimated thermodynamic parameters (ΔH ≈ 164 kJ/mol and ΔG ≈ 169 kJ/mol) confirmed viability of FMS pyrolysis. ANN-based model yielded a test R2 of 0.994 and low mean squared error of 0.684 for predicting weight loss during FMS pyrolysis.
通过无模型和基于模型的方法对小谷秸秆热解动力学和热力学进行分析,并应用基于神经网络的机器学习模型进行热降解预测
本研究对谷草脱挥发各阶段的热降解进行了深入的动力学和热力学分析,并结合人工神经网络(ANN)建模。采用无模型方法(即Kissinger-Akahira-Sunose (KAS)、Flynn-Wall-Ozawa (FWO)、Friedman、Starink和Vyazovkin)和模型拟合方法(即分布式活化能模型(DAEM))进行动力学分析。结果表明,FMS热解的平均活化能在167 ~ 175 kJ/mol之间。单因素方差分析显示,通过各种方法得到的活化能没有显著偏差。主图显示,α <的FMS热解服从一阶(R1);α >的0.5和二维扩散(D2)、ginstling - browshtein (D4)和幂律(P4)模型;0.5. 估算的热力学参数(ΔH≈164 kJ/mol和ΔG≈169 kJ/mol)证实了FMS热解的可行性。基于ann的模型预测FMS热解失重的检验R2为0.994,均方误差为0.684。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioresource Technology Reports
Bioresource Technology Reports Environmental Science-Environmental Engineering
CiteScore
7.20
自引率
0.00%
发文量
390
审稿时长
28 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信