Stefano Liotino , Stefania Cometa , Stefano Todisco , Piero Mastrorilli , Carlos Bengoechea , Antonio Salomone , Elvira De Giglio
{"title":"Synthesis and characterization of succinylated pectin hydrogels with enhanced swelling performances","authors":"Stefano Liotino , Stefania Cometa , Stefano Todisco , Piero Mastrorilli , Carlos Bengoechea , Antonio Salomone , Elvira De Giglio","doi":"10.1016/j.reactfunctpolym.2025.106331","DOIUrl":null,"url":null,"abstract":"<div><div>A novel polymeric material was obtained through succinylation of pectin (S-Pec), resulting in greater stability, film-forming ability, transparency, swelling, and water retention capacity compared to native pectin (Pec). Spectroscopic techniques confirmed the success of the succinylation reaction performed on pectin, employing the reaction of galacturonic acid with succinic anhydride as a model reaction under similar experimental conditions. Moreover, fluorinated succinic anhydride was used to gain insight into the succinylation degree by X-ray Photoelectron Spectroscopy, and a different thermal behavior of S-Pec compared to Pec was confirmed through thermoanalytical characterization. Additionally, the effect of cross-linking either Pec or S-Pec in the presence of divalent cations (i.e., calcium or magnesium ions) on water retention capacity and stability was tested. A significant improvement in the ability to absorb and retain water or saline solution was found for magnesium-crosslinked succinylated pectin, while the in vitro hydrogel stability was higher for the calcium-crosslinked one. The obtained polymer represents a promising substrate for the development of natural-based superabsorbent polymers.</div></div>","PeriodicalId":20916,"journal":{"name":"Reactive & Functional Polymers","volume":"214 ","pages":"Article 106331"},"PeriodicalIF":5.1000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reactive & Functional Polymers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138151482500183X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
A novel polymeric material was obtained through succinylation of pectin (S-Pec), resulting in greater stability, film-forming ability, transparency, swelling, and water retention capacity compared to native pectin (Pec). Spectroscopic techniques confirmed the success of the succinylation reaction performed on pectin, employing the reaction of galacturonic acid with succinic anhydride as a model reaction under similar experimental conditions. Moreover, fluorinated succinic anhydride was used to gain insight into the succinylation degree by X-ray Photoelectron Spectroscopy, and a different thermal behavior of S-Pec compared to Pec was confirmed through thermoanalytical characterization. Additionally, the effect of cross-linking either Pec or S-Pec in the presence of divalent cations (i.e., calcium or magnesium ions) on water retention capacity and stability was tested. A significant improvement in the ability to absorb and retain water or saline solution was found for magnesium-crosslinked succinylated pectin, while the in vitro hydrogel stability was higher for the calcium-crosslinked one. The obtained polymer represents a promising substrate for the development of natural-based superabsorbent polymers.
期刊介绍:
Reactive & Functional Polymers provides a forum to disseminate original ideas, concepts and developments in the science and technology of polymers with functional groups, which impart specific chemical reactivity or physical, chemical, structural, biological, and pharmacological functionality. The scope covers organic polymers, acting for instance as reagents, catalysts, templates, ion-exchangers, selective sorbents, chelating or antimicrobial agents, drug carriers, sensors, membranes, and hydrogels. This also includes reactive cross-linkable prepolymers and high-performance thermosetting polymers, natural or degradable polymers, conducting polymers, and porous polymers.
Original research articles must contain thorough molecular and material characterization data on synthesis of the above polymers in combination with their applications. Applications include but are not limited to catalysis, water or effluent treatment, separations and recovery, electronics and information storage, energy conversion, encapsulation, or adhesion.