Jiahao Liu , Zhaorui Zhang , Chenshuai Han, Minghui Yang
{"title":"VN/Copper foam self-supporting catalyst for efficient electrocatalytic hydrogen peroxide generation","authors":"Jiahao Liu , Zhaorui Zhang , Chenshuai Han, Minghui Yang","doi":"10.1016/j.mtcata.2025.100102","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) is a crucial chemical, while its conventional production methods are energy-intensive and environmentally damaging. Electrocatalytic synthesis of H<sub>2</sub>O<sub>2</sub> through 2e<sup>-</sup> oxygen reduction reaction (ORR) presents a sustainable alternative. Here, we introduce a novel VN/Copper foam (VN/CF) self-supporting catalyst, achieving an H<sub>2</sub>O<sub>2</sub> production yield rate of 169.7 mg·h<sup>−1</sup>·cm<sup>−2</sup> with a Faradaic efficiency (FE) of 89.1 %. The self-supporting VN/CF demonstrates remarkable durability, sustaining stable operation at a current density of 300 mA cm<sup>−2</sup> over 110 h. Notably, the capital cost of 70 wt% H<sub>2</sub>O<sub>2</sub> is remarkably low at just $0.25/kg. This work highlights the potential of self-supported metal nitrides as stable and efficient 2e<sup>-</sup> ORR catalysts.</div></div>","PeriodicalId":100892,"journal":{"name":"Materials Today Catalysis","volume":"9 ","pages":"Article 100102"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949754X25000158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen peroxide (H2O2) is a crucial chemical, while its conventional production methods are energy-intensive and environmentally damaging. Electrocatalytic synthesis of H2O2 through 2e- oxygen reduction reaction (ORR) presents a sustainable alternative. Here, we introduce a novel VN/Copper foam (VN/CF) self-supporting catalyst, achieving an H2O2 production yield rate of 169.7 mg·h−1·cm−2 with a Faradaic efficiency (FE) of 89.1 %. The self-supporting VN/CF demonstrates remarkable durability, sustaining stable operation at a current density of 300 mA cm−2 over 110 h. Notably, the capital cost of 70 wt% H2O2 is remarkably low at just $0.25/kg. This work highlights the potential of self-supported metal nitrides as stable and efficient 2e- ORR catalysts.