Existence of ground state solutions for a class of bi-non-local Kirchhoff-type problems with variable exponents

Q1 Mathematics
Hind Bouaam , Mohamed El Ouaarabi , Said Melliani , Maria Alessandra Ragusa
{"title":"Existence of ground state solutions for a class of bi-non-local Kirchhoff-type problems with variable exponents","authors":"Hind Bouaam ,&nbsp;Mohamed El Ouaarabi ,&nbsp;Said Melliani ,&nbsp;Maria Alessandra Ragusa","doi":"10.1016/j.padiff.2025.101201","DOIUrl":null,"url":null,"abstract":"<div><div>Our goal in this work is to investigate the existence of ground state solutions, i.e., solutions with the least energy, for a bi-nonlocal Kirchhoff-type problem with variable exponents on compact Riemannian manifolds. Using a minimization argument combined with a quantitative deformation lemma and Brouwer degree theory, we establish the existence of solutions for the problem under consideration.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"14 ","pages":"Article 101201"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125001287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Our goal in this work is to investigate the existence of ground state solutions, i.e., solutions with the least energy, for a bi-nonlocal Kirchhoff-type problem with variable exponents on compact Riemannian manifolds. Using a minimization argument combined with a quantitative deformation lemma and Brouwer degree theory, we establish the existence of solutions for the problem under consideration.
一类变指数双非局部kirchhoff型问题基态解的存在性
本文的目的是研究紧黎曼流形上双非局部变指数kirchhoff型问题的基态解的存在性,即最小能量解。利用最小化论证结合定量变形引理和browwer度理论,我们建立了所考虑问题解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信