Aptamer-functionalized biomimetic supramolecular nanozyme constructed by dipeptide, glutaraldehyde and hemin and its excellent sensing performances for tetrodotoxin

IF 10.7 1区 生物学 Q1 BIOPHYSICS
Hongchao Ma , Xifeng Ma , Tiantian Dong , Xinyu Bian , Xiaokang Zhang , Yanhui Wei
{"title":"Aptamer-functionalized biomimetic supramolecular nanozyme constructed by dipeptide, glutaraldehyde and hemin and its excellent sensing performances for tetrodotoxin","authors":"Hongchao Ma ,&nbsp;Xifeng Ma ,&nbsp;Tiantian Dong ,&nbsp;Xinyu Bian ,&nbsp;Xiaokang Zhang ,&nbsp;Yanhui Wei","doi":"10.1016/j.bios.2025.117524","DOIUrl":null,"url":null,"abstract":"<div><div>Bioinspired nanozymes hold promise for simulating natural processes and creating optimized functional systems, but their application is hindered by limited catalytic activity and selectivity. These challenges can be addressed by reconstructing enzymatic active sites to enhance catalytic efficiency and integrating biological recognition units for specificity. In this work, we developed a peroxidase-mimicking nanozyme by stabilizing hemin on a supramolecular scaffold of diphenylalanine (FF) and glutaraldehyde (GA). To enable specific recognition, we conjugated a tetrodotoxin (TTX) aptamer, yielding the He@FF/GA-Apt composite nanozyme. This nanozyme demonstrated robust catalytic activity in 3,3′,5,5′-tetramethylbenzidine (TMB) oxidation. The TTX aptamer conferred specific TTX recognition, with the aptamer-TTX complex blocking the nanozyme active site and reducing its activity. Based on this mechanism, we created a dual-mode TTX detection method using UV–vis spectroscopy and smartphone RGB analysis. The UV–vis mode achieved a linear range of 1.0–40.0 ng mL<sup>−1</sup> and a limit of detection (LOD) of 0.61 ng mL<sup>−1</sup>, while the smartphone mode had a LOD of 1.43 ng mL<sup>−1</sup> in a linear range of 2.0–40.0 ng mL<sup>−1</sup>. Both methods performed well in real samples, with recoveries of 96.29 %–102.57 % (UV–vis mode) and 92.07 %–109.46 % (RGB mode). In comparation, the UV–vis mode offers high sensitivity but requires lab equipment, whereas smartphone RGB mode enables rapid on-site detection despite a little lower sensitivity. This work provides a promising approach for developing target-specific nanozyme sensors.</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"283 ","pages":"Article 117524"},"PeriodicalIF":10.7000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956566325003987","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Bioinspired nanozymes hold promise for simulating natural processes and creating optimized functional systems, but their application is hindered by limited catalytic activity and selectivity. These challenges can be addressed by reconstructing enzymatic active sites to enhance catalytic efficiency and integrating biological recognition units for specificity. In this work, we developed a peroxidase-mimicking nanozyme by stabilizing hemin on a supramolecular scaffold of diphenylalanine (FF) and glutaraldehyde (GA). To enable specific recognition, we conjugated a tetrodotoxin (TTX) aptamer, yielding the He@FF/GA-Apt composite nanozyme. This nanozyme demonstrated robust catalytic activity in 3,3′,5,5′-tetramethylbenzidine (TMB) oxidation. The TTX aptamer conferred specific TTX recognition, with the aptamer-TTX complex blocking the nanozyme active site and reducing its activity. Based on this mechanism, we created a dual-mode TTX detection method using UV–vis spectroscopy and smartphone RGB analysis. The UV–vis mode achieved a linear range of 1.0–40.0 ng mL−1 and a limit of detection (LOD) of 0.61 ng mL−1, while the smartphone mode had a LOD of 1.43 ng mL−1 in a linear range of 2.0–40.0 ng mL−1. Both methods performed well in real samples, with recoveries of 96.29 %–102.57 % (UV–vis mode) and 92.07 %–109.46 % (RGB mode). In comparation, the UV–vis mode offers high sensitivity but requires lab equipment, whereas smartphone RGB mode enables rapid on-site detection despite a little lower sensitivity. This work provides a promising approach for developing target-specific nanozyme sensors.
由二肽、戊二醛和血红素构建的适配体功能化仿生超分子纳米酶及其对河豚毒素的优异传感性能
生物启发纳米酶有望模拟自然过程和创建优化的功能系统,但它们的应用受到有限的催化活性和选择性的阻碍。这些挑战可以通过重组酶活性位点来提高催化效率和整合生物识别单元来解决。在这项工作中,我们通过将血红蛋白稳定在二苯丙氨酸(FF)和戊二醛(GA)的超分子支架上,开发了一种模拟过氧化物酶的纳米酶。为了实现特异性识别,我们偶联了河豚毒素(TTX)适体,得到He@FF/GA-Apt复合纳米酶。该纳米酶对3,3 ',5,5 ' -四甲基联苯胺(TMB)的氧化具有较强的催化活性。TTX适配体赋予特定的TTX识别,适配体-TTX复合物阻断纳米酶活性位点并降低其活性。基于这一机制,我们建立了一种利用紫外-可见光谱和智能手机RGB分析的双模TTX检测方法。UV-vis模式在1.0 ~ 40.0 ng mL−1的线性范围内,检测限(LOD)为0.61 ng mL−1,而智能手机模式在2.0 ~ 40.0 ng mL−1的线性范围内,检测限为1.43 ng mL−1。两种方法在实际样品中均表现良好,回收率分别为96.29% ~ 102.57%(紫外-可见模式)和92.07% ~ 109.46% (RGB模式)。相比之下,UV-vis模式具有高灵敏度,但需要实验室设备,而智能手机RGB模式可以快速进行现场检测,尽管灵敏度稍低。这项工作为开发靶向纳米酶传感器提供了一种有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biosensors and Bioelectronics
Biosensors and Bioelectronics 工程技术-电化学
CiteScore
20.80
自引率
7.10%
发文量
1006
审稿时长
29 days
期刊介绍: Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信