Calum Macrae , Damjan Lalović , Tom D. Bunney, Matilda Katan
{"title":"Phosphoinositide-specific phospholipase C enzymes: Recent advances in a long journey","authors":"Calum Macrae , Damjan Lalović , Tom D. Bunney, Matilda Katan","doi":"10.1016/j.bbalip.2025.159627","DOIUrl":null,"url":null,"abstract":"<div><div>A journey that started with the discovery of phospholipase C catalysed inositol-lipid hydrolysis as a receptor-controlled signalling event, culminated in defining molecular properties and roles of phosphoinositide-specific phospholipase C (PLC) families. Currently, there are six classical (13 isoforms) and one atypical (3 isoforms) family, expressed in a wide range of mammalian cells where they perform key functions in intracellular signal transduction. We here highlight recent advances in the PLC field, mostly resulting from studies of the PLCγ family members, PLCγ1 and PLCγ2. These new discoveries include elucidation of their structural and functional properties as well as their roles in physiology and disease development. We also illustrate the involvement of classical PLC families in control of cellular processes mediated not only by the PtdIns(4,5)<em>P</em><sub>2</sub>-derived second messengers, resulting from the PLC hydrolysis, but also by second messenger-independent consequences of PtdIns(4,5)<em>P</em><sub>2</sub> hydrolysis. Presented examples are focused on regulation of ion channels by PtdIns(4,5)<em>P</em><sub>2</sub>.</div></div>","PeriodicalId":8815,"journal":{"name":"Biochimica et biophysica acta. Molecular and cell biology of lipids","volume":"1870 5","pages":"Article 159627"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular and cell biology of lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388198125000356","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A journey that started with the discovery of phospholipase C catalysed inositol-lipid hydrolysis as a receptor-controlled signalling event, culminated in defining molecular properties and roles of phosphoinositide-specific phospholipase C (PLC) families. Currently, there are six classical (13 isoforms) and one atypical (3 isoforms) family, expressed in a wide range of mammalian cells where they perform key functions in intracellular signal transduction. We here highlight recent advances in the PLC field, mostly resulting from studies of the PLCγ family members, PLCγ1 and PLCγ2. These new discoveries include elucidation of their structural and functional properties as well as their roles in physiology and disease development. We also illustrate the involvement of classical PLC families in control of cellular processes mediated not only by the PtdIns(4,5)P2-derived second messengers, resulting from the PLC hydrolysis, but also by second messenger-independent consequences of PtdIns(4,5)P2 hydrolysis. Presented examples are focused on regulation of ion channels by PtdIns(4,5)P2.
期刊介绍:
BBA Molecular and Cell Biology of Lipids publishes papers on original research dealing with novel aspects of molecular genetics related to the lipidome, the biosynthesis of lipids, the role of lipids in cells and whole organisms, the regulation of lipid metabolism and function, and lipidomics in all organisms. Manuscripts should significantly advance the understanding of the molecular mechanisms underlying biological processes in which lipids are involved. Papers detailing novel methodology must report significant biochemical, molecular, or functional insight in the area of lipids.