Sheng Wei , Ying Li , Xiaoru Qiao , Yiuyin Lee , Yatsze Choy
{"title":"Asymmetric sway panel design for noise reduction by modal radiation efficiency tunning approach","authors":"Sheng Wei , Ying Li , Xiaoru Qiao , Yiuyin Lee , Yatsze Choy","doi":"10.1016/j.apacoust.2025.110796","DOIUrl":null,"url":null,"abstract":"<div><div>Built-up panels are widely employed for noise reduction, with their effectiveness primarily dependent on transverse vibrations, as corroborated by numerous studies. Transverse vibrations occur perpendicular to the panel’s surface and are known for their substantial sound radiation. This study introduces a novel technique for tuning modal radiation efficiency, designed to diminish sound radiation from a sway panel comprised of two vertical and one horizontal segment. Notably, when the primary vibration direction of a panel is parallel to its surface (i.e., sway vibration), both the level of transverse vibrations and the corresponding sound radiation efficiency are significantly reduced. A theoretical model was developed to investigate the interplay between transverse and longitudinal vibrations across adjacent components, shedding light on the sound radiation reduction mechanism. The sway structure exhibited a 43.5 % reduction in maximum transverse displacement compared to a simply supported beam, while the maximum longitudinal displacement was adjusted to align with the transverse displacement levels. Moreover, sway modes, in comparison to simply supported beams, demonstrate reduced radiation efficiency due to their dipole-like sound radiation patterns. Consequently, the maximum sound pressure level of the sway structure was lowered by 7 dB compared to that of the simply supported beam. This model also enables the creation of two sway modes with closely spaced frequencies through precise modifications of lengths and thicknesses, highlighting the significance of asymmetric geometry. Furthermore, comparisons of the proposed model with finite element methods and experimental results confirm a strong concordance, validating the effectiveness of the sway structure in achieving reduced sound radiation.</div></div>","PeriodicalId":55506,"journal":{"name":"Applied Acoustics","volume":"238 ","pages":"Article 110796"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Acoustics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003682X25002683","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Built-up panels are widely employed for noise reduction, with their effectiveness primarily dependent on transverse vibrations, as corroborated by numerous studies. Transverse vibrations occur perpendicular to the panel’s surface and are known for their substantial sound radiation. This study introduces a novel technique for tuning modal radiation efficiency, designed to diminish sound radiation from a sway panel comprised of two vertical and one horizontal segment. Notably, when the primary vibration direction of a panel is parallel to its surface (i.e., sway vibration), both the level of transverse vibrations and the corresponding sound radiation efficiency are significantly reduced. A theoretical model was developed to investigate the interplay between transverse and longitudinal vibrations across adjacent components, shedding light on the sound radiation reduction mechanism. The sway structure exhibited a 43.5 % reduction in maximum transverse displacement compared to a simply supported beam, while the maximum longitudinal displacement was adjusted to align with the transverse displacement levels. Moreover, sway modes, in comparison to simply supported beams, demonstrate reduced radiation efficiency due to their dipole-like sound radiation patterns. Consequently, the maximum sound pressure level of the sway structure was lowered by 7 dB compared to that of the simply supported beam. This model also enables the creation of two sway modes with closely spaced frequencies through precise modifications of lengths and thicknesses, highlighting the significance of asymmetric geometry. Furthermore, comparisons of the proposed model with finite element methods and experimental results confirm a strong concordance, validating the effectiveness of the sway structure in achieving reduced sound radiation.
期刊介绍:
Since its launch in 1968, Applied Acoustics has been publishing high quality research papers providing state-of-the-art coverage of research findings for engineers and scientists involved in applications of acoustics in the widest sense.
Applied Acoustics looks not only at recent developments in the understanding of acoustics but also at ways of exploiting that understanding. The Journal aims to encourage the exchange of practical experience through publication and in so doing creates a fund of technological information that can be used for solving related problems. The presentation of information in graphical or tabular form is especially encouraged. If a report of a mathematical development is a necessary part of a paper it is important to ensure that it is there only as an integral part of a practical solution to a problem and is supported by data. Applied Acoustics encourages the exchange of practical experience in the following ways: • Complete Papers • Short Technical Notes • Review Articles; and thereby provides a wealth of technological information that can be used to solve related problems.
Manuscripts that address all fields of applications of acoustics ranging from medicine and NDT to the environment and buildings are welcome.