Christian Buchmann , Sven Korz , Anja Moraru , Elke Richling , Sullivan Sadzik , Maren Scharfenberger-Schmeer , Katherine Muñoz
{"title":"From winery by-product to soil improver? – A comprehensive review of grape pomace in agriculture and its effects on soil properties and functions","authors":"Christian Buchmann , Sven Korz , Anja Moraru , Elke Richling , Sullivan Sadzik , Maren Scharfenberger-Schmeer , Katherine Muñoz","doi":"10.1016/j.scitotenv.2025.179611","DOIUrl":null,"url":null,"abstract":"<div><div>Grape pomace (GP), a by-product of winemaking, is rich in organic carbon and nutrients, offering potential as an alternative to synthetic soil amendments. However, its broader use in agriculture remains limited due to uncertainties about long-term environmental and agronomic impacts. This review assesses the potential of GP as a soil amendment, highlighting its ability to enhance soil organic matter, nutrient availability, and soil physicochemical properties. At the same time, concerns remain regarding its acidic nature, wide carbon-to‑nitrogen (C/N) ratio, and bioactive compounds, such as mycotoxins and (poly)phenols, which could negatively impact soil microbial communities and nutrient cycling. Furthermore, residual contaminants such as pesticides and heavy metals in GP may pose ecotoxicological risks, potentially disrupting soil ecosystem functions and contaminating surrounding environments.</div><div>Besides these challenges, research on the efficiency, fate and mobility of GP in soil, particularly in relation to soil type, climate, and agricultural practices, is limited. Furthermore, the effects of various (pre)treatments (e.g., composting, fermentation) on GP properties and soil interactions require more systematic investigation. Future research should focus on long-term field trials, advanced analytical methods, and effective monitoring frameworks. It is essential to refine regulatory guidance based on comprehensive risk assessments to ensure safe application and maximize GP's agronomic and environmental benefits. Overcoming these challenges could transform GP into a valuable resource for sustainable agriculture, contributing to soil health, climate resilience, and a circular economy.</div></div>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"982 ","pages":"Article 179611"},"PeriodicalIF":8.2000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048969725012525","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Grape pomace (GP), a by-product of winemaking, is rich in organic carbon and nutrients, offering potential as an alternative to synthetic soil amendments. However, its broader use in agriculture remains limited due to uncertainties about long-term environmental and agronomic impacts. This review assesses the potential of GP as a soil amendment, highlighting its ability to enhance soil organic matter, nutrient availability, and soil physicochemical properties. At the same time, concerns remain regarding its acidic nature, wide carbon-to‑nitrogen (C/N) ratio, and bioactive compounds, such as mycotoxins and (poly)phenols, which could negatively impact soil microbial communities and nutrient cycling. Furthermore, residual contaminants such as pesticides and heavy metals in GP may pose ecotoxicological risks, potentially disrupting soil ecosystem functions and contaminating surrounding environments.
Besides these challenges, research on the efficiency, fate and mobility of GP in soil, particularly in relation to soil type, climate, and agricultural practices, is limited. Furthermore, the effects of various (pre)treatments (e.g., composting, fermentation) on GP properties and soil interactions require more systematic investigation. Future research should focus on long-term field trials, advanced analytical methods, and effective monitoring frameworks. It is essential to refine regulatory guidance based on comprehensive risk assessments to ensure safe application and maximize GP's agronomic and environmental benefits. Overcoming these challenges could transform GP into a valuable resource for sustainable agriculture, contributing to soil health, climate resilience, and a circular economy.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.