All-day Joule-heat assisted photothermal interfacial water evaporation system with porous network hydrogel

IF 6.1 2区 工程技术 Q2 ENERGY & FUELS
Bianfeng Yang , Cong Wang , Xu Ji , Junneng Nie , Junyao Mao , Yue Yang
{"title":"All-day Joule-heat assisted photothermal interfacial water evaporation system with porous network hydrogel","authors":"Bianfeng Yang ,&nbsp;Cong Wang ,&nbsp;Xu Ji ,&nbsp;Junneng Nie ,&nbsp;Junyao Mao ,&nbsp;Yue Yang","doi":"10.1016/j.applthermaleng.2025.126837","DOIUrl":null,"url":null,"abstract":"<div><div>Solar-driven interfacial evaporation (SDIE) technology with green and sustainable characteristics is considered an effective solution to the global freshwater crisis. This paper proposes an all-day Joule-heat assisted photothermal interfacial water evaporation system with a porous network hydrogel (PPC@TCN). The system effectively integrates the advantages of Joule-heat and photothermal energy conversion, enabling PPC@TCN to achieve continuous interfacial water evaporation throughout the day and night. PPC@TCN employs polyvinyl alcohol/polyvinylimine (PP) as the hydrogel matrix, introducing carbon black (CB) and Ti<sub>3</sub>C<sub>2</sub>(OH)<sub>2</sub>/porous g-C<sub>3</sub>N<sub>4</sub> (TCN) as light-absorbing agents. The light-absorbing agents enable PPC@TCN to achieve an evaporation rate of 3.40 kg/(m<sup>2</sup>∙h) under 1 sun irradiation, which is 6.5 times higher than that of PP. Under the driving conditions of 1 sun irradiation synergized with 5 V voltage, the evaporation rate of PPC@TCN is further enhanced to 11.89 kg/(m<sup>2</sup>∙h). After the application of PPC@TCN in the system, the evaporation rate remains stable between 9.0 − 11.72 kg/(m<sup>2</sup>∙h) under the combined drive of 0.45 − 0.97 kW/m<sup>2</sup> solar irradiance and 5 V voltage (daytime). Even under independent 5 V voltage (nighttime), the evaporation rate of PPC@TCN still reaches 7.27 − 7.90 kg/(m<sup>2</sup>∙h). And the daily freshwater collection of the system can achieve 80.53 − 86.50 kg/m<sup>2</sup>, while the thermal utilization efficiency reaches 87.37 %−91.78 %. Furthermore, the surface of PPC@TCN revealed no significant salt crystallization after continuous operation for 7 days outdoors and the evaporation rate displayed hardly any reduction. This indicates that PPC@TCN has excellent salt resistance and stability. Therefore, the investigation in this paper offers an effective pathway to achieve continuous operation and practical application of SDIE.</div></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":"274 ","pages":"Article 126837"},"PeriodicalIF":6.1000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431125014292","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Solar-driven interfacial evaporation (SDIE) technology with green and sustainable characteristics is considered an effective solution to the global freshwater crisis. This paper proposes an all-day Joule-heat assisted photothermal interfacial water evaporation system with a porous network hydrogel (PPC@TCN). The system effectively integrates the advantages of Joule-heat and photothermal energy conversion, enabling PPC@TCN to achieve continuous interfacial water evaporation throughout the day and night. PPC@TCN employs polyvinyl alcohol/polyvinylimine (PP) as the hydrogel matrix, introducing carbon black (CB) and Ti3C2(OH)2/porous g-C3N4 (TCN) as light-absorbing agents. The light-absorbing agents enable PPC@TCN to achieve an evaporation rate of 3.40 kg/(m2∙h) under 1 sun irradiation, which is 6.5 times higher than that of PP. Under the driving conditions of 1 sun irradiation synergized with 5 V voltage, the evaporation rate of PPC@TCN is further enhanced to 11.89 kg/(m2∙h). After the application of PPC@TCN in the system, the evaporation rate remains stable between 9.0 − 11.72 kg/(m2∙h) under the combined drive of 0.45 − 0.97 kW/m2 solar irradiance and 5 V voltage (daytime). Even under independent 5 V voltage (nighttime), the evaporation rate of PPC@TCN still reaches 7.27 − 7.90 kg/(m2∙h). And the daily freshwater collection of the system can achieve 80.53 − 86.50 kg/m2, while the thermal utilization efficiency reaches 87.37 %−91.78 %. Furthermore, the surface of PPC@TCN revealed no significant salt crystallization after continuous operation for 7 days outdoors and the evaporation rate displayed hardly any reduction. This indicates that PPC@TCN has excellent salt resistance and stability. Therefore, the investigation in this paper offers an effective pathway to achieve continuous operation and practical application of SDIE.
多孔网状水凝胶全天焦耳热辅助光热界面水蒸发系统
太阳能驱动界面蒸发(SDIE)技术具有绿色和可持续的特点,被认为是解决全球淡水危机的有效方法。本文提出了一种全天焦耳热辅助光热界面水蒸发系统与多孔网络水凝胶(PPC@TCN)。该系统有效地集成了焦耳热和光热能量转换的优势,使PPC@TCN能够实现昼夜连续的界面水蒸发。PPC@TCN以聚乙烯醇/聚乙烯胺(PP)为水凝胶基质,引入炭黑(CB)和Ti3C2(OH)2/多孔g-C3N4 (TCN)为吸光剂。吸光剂使PPC@TCN在1次太阳照射下的蒸发速率达到3.40 kg/(m2∙h),是PP的6.5倍,在1次太阳照射和5 V电压协同的驱动条件下,PPC@TCN的蒸发速率进一步提高到11.89 kg/(m2∙h)。应用PPC@TCN后,在0.45 ~ 0.97 kW/m2太阳辐照度和5 V电压(白天)的联合驱动下,蒸发速率稳定在9.0 ~ 11.72 kg/(m2∙h)之间。即使在独立的5 V电压下(夜间),PPC@TCN的蒸发速率仍然达到7.27 ~ 7.90 kg/(m2∙h)。系统日淡水集水量可达80.53 ~ 86.50 kg/m2,热利用效率达87.37% ~ 91.78%。在室外连续运行7天后,PPC@TCN表面没有明显的盐结晶现象,蒸发速率几乎没有降低。这表明PPC@TCN具有优异的耐盐性和稳定性。因此,本文的研究为实现SDIE的连续运行和实际应用提供了有效途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Thermal Engineering
Applied Thermal Engineering 工程技术-工程:机械
CiteScore
11.30
自引率
15.60%
发文量
1474
审稿时长
57 days
期刊介绍: Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application. The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信