{"title":"Standing waves with prescribed mass for NLS equations with Hardy potential in the half-space under Neumann boundary condition","authors":"Yuxuan Zhang , Xiaojun Chang , Lin Chen","doi":"10.1016/j.cnsns.2025.108917","DOIUrl":null,"url":null,"abstract":"<div><div>Consider the Neumann problem: <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><mspace></mspace></mtd><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>−</mo><mfrac><mrow><mi>μ</mi></mrow><mrow><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mi>u</mi><mo>+</mo><mi>λ</mi><mi>u</mi><mo>=</mo><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mspace></mspace><mspace></mspace><mspace></mspace><mtext>in</mtext><mspace></mspace><mspace></mspace><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>N</mi></mrow></msubsup><mo>,</mo><mspace></mspace><mi>N</mi><mo>≥</mo><mn>3</mn><mo>,</mo></mtd></mtr><mtr><mtd><mspace></mspace></mtd><mtd><mfrac><mrow><mi>∂</mi><mi>u</mi></mrow><mrow><mi>∂</mi><mi>ν</mi></mrow></mfrac><mo>=</mo><mn>0</mn><mspace></mspace><mspace></mspace><mtext>on</mtext><mspace></mspace><mspace></mspace><mi>∂</mi><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>N</mi></mrow></msubsup></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>with the prescribed mass: <span><span><span><math><mrow><msub><mrow><mo>∫</mo></mrow><mrow><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>N</mi></mrow></msubsup></mrow></msub><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi><mo>=</mo><mi>a</mi><mo>></mo><mn>0</mn><mo>,</mo></mrow></math></span></span></span>where <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>N</mi></mrow></msubsup></math></span> denotes the upper half-space in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>, <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></math></span> is the Hardy potential, <span><math><mrow><mn>2</mn><mo><</mo><mi>q</mi><mo><</mo><mn>2</mn><mo>+</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mo><</mo><mi>p</mi><mo><</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span>, <span><math><mrow><mi>μ</mi><mo>></mo><mn>0</mn></mrow></math></span>, <span><math><mi>ν</mi></math></span> stands for the outward unit normal vector to <span><math><mrow><mi>∂</mi><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>N</mi></mrow></msubsup></mrow></math></span>, and <span><math><mi>λ</mi></math></span> appears as a Lagrange multiplier. Firstly, by applying Ekeland’s variational principle, we establish the existence of normalized solutions that correspond to local minima of the associated energy functional. Furthermore, we find a second normalized solution of mountain pass type by employing a parameterized minimax principle that incorporates Morse index information. Our analysis relies on a Hardy inequality in <span><math><mrow><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>N</mi></mrow></msubsup><mo>)</mo></mrow></mrow></math></span>, as well as a Pohozaev identity involving the Hardy potential on <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>N</mi></mrow></msubsup></math></span>. This work provides a variational framework for investigating the existence of normalized solutions to the Hardy type system within a half-space, and our approach is flexible, allowing it to be adapted to handle more general nonlinearities.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"149 ","pages":"Article 108917"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570425003284","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Consider the Neumann problem: with the prescribed mass: where denotes the upper half-space in , is the Hardy potential, , , stands for the outward unit normal vector to , and appears as a Lagrange multiplier. Firstly, by applying Ekeland’s variational principle, we establish the existence of normalized solutions that correspond to local minima of the associated energy functional. Furthermore, we find a second normalized solution of mountain pass type by employing a parameterized minimax principle that incorporates Morse index information. Our analysis relies on a Hardy inequality in , as well as a Pohozaev identity involving the Hardy potential on . This work provides a variational framework for investigating the existence of normalized solutions to the Hardy type system within a half-space, and our approach is flexible, allowing it to be adapted to handle more general nonlinearities.
期刊介绍:
The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity.
The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged.
Topics of interest:
Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity.
No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.