{"title":"Strange quark stars and condensate dark stars in Bumblebee gravity","authors":"Grigoris Panotopoulos , Ali Övgün","doi":"10.1016/j.nuclphysb.2025.116956","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate the properties of relativistic stars made of isotropic matter within the framework of the minimal Standard Model Extension, where a Bumblebee field (BF) coupled to spacetime induces spontaneous Lorentz symmetry breaking. We adopt analytic equations-of-state describing either condensate dark stars or strange quark stars. We solve the structure equations numerically, and we compute the mass-to-radius relationships. The influence of the Bumblebee parameter <strong>l</strong> is examined in detail, and an upper bound is obtained using the massive pulsar (PSR) J0740+6620 and the strangely light High Energy Stereoscopic System (HESS) J1731-347 compact object.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1017 ","pages":"Article 116956"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321325001658","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we investigate the properties of relativistic stars made of isotropic matter within the framework of the minimal Standard Model Extension, where a Bumblebee field (BF) coupled to spacetime induces spontaneous Lorentz symmetry breaking. We adopt analytic equations-of-state describing either condensate dark stars or strange quark stars. We solve the structure equations numerically, and we compute the mass-to-radius relationships. The influence of the Bumblebee parameter l is examined in detail, and an upper bound is obtained using the massive pulsar (PSR) J0740+6620 and the strangely light High Energy Stereoscopic System (HESS) J1731-347 compact object.
期刊介绍:
Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.