Fin geometry optimization for enhanced PCM solidification in solar cooking thermal storage system: Numerical simulation and experimental validation

Q1 Chemical Engineering
Abraha Kahsay Kiros , Balewgize Amare Zeru , Debela Geneti Desisa , Desta Goytom Tewolde
{"title":"Fin geometry optimization for enhanced PCM solidification in solar cooking thermal storage system: Numerical simulation and experimental validation","authors":"Abraha Kahsay Kiros ,&nbsp;Balewgize Amare Zeru ,&nbsp;Debela Geneti Desisa ,&nbsp;Desta Goytom Tewolde","doi":"10.1016/j.ijft.2025.101243","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the enhancement of heat transfer in phase change materials (PCMs) for solar cooking applications by optimizing fin dimensions to address the low thermal conductivity of PCM during the discharging process. A numerical and experimental analysis was conducted to evaluate the impact of fin length and thickness on solidification time and energy storage capacity, balancing the trade-off between heat transfer improvement and PCM volume reduction. Using ANSYS 16.0 for computational fluid dynamics (CFD) simulations and response surface methodology (RSM) for design optimization, the study employed solar salt (53 % KNO<sub>3</sub>, 6 % NaNO<sub>3</sub>, 41 % NaNO<sub>2</sub>) with a melting point of 142 °C and latent heat of 110 kJ/kg. Key parameters included fin lengths (70 - 140 mm) and thicknesses (0.8 - 1.5 mm), validated experimentally. Results demonstrated that increasing fin length significantly outperformed thickness enhancement; a fin with 1.5 mm thickness and 140 mm length reduced solidification time by 65.97 % compared to a finless system. RSM optimization identified a fin configuration of 0.8 mm thickness and 140 mm length as optimal, achieving complete solidification in 10.21 hours while releasing 2237.91 kJ of stored energy. These findings highlight the critical role of fin geometry in improving PCM efficiency, enabling effective solar energy storage for extended use, and advancing sustainable alternatives to conventional cooking fuels.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"27 ","pages":"Article 101243"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202725001909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the enhancement of heat transfer in phase change materials (PCMs) for solar cooking applications by optimizing fin dimensions to address the low thermal conductivity of PCM during the discharging process. A numerical and experimental analysis was conducted to evaluate the impact of fin length and thickness on solidification time and energy storage capacity, balancing the trade-off between heat transfer improvement and PCM volume reduction. Using ANSYS 16.0 for computational fluid dynamics (CFD) simulations and response surface methodology (RSM) for design optimization, the study employed solar salt (53 % KNO3, 6 % NaNO3, 41 % NaNO2) with a melting point of 142 °C and latent heat of 110 kJ/kg. Key parameters included fin lengths (70 - 140 mm) and thicknesses (0.8 - 1.5 mm), validated experimentally. Results demonstrated that increasing fin length significantly outperformed thickness enhancement; a fin with 1.5 mm thickness and 140 mm length reduced solidification time by 65.97 % compared to a finless system. RSM optimization identified a fin configuration of 0.8 mm thickness and 140 mm length as optimal, achieving complete solidification in 10.21 hours while releasing 2237.91 kJ of stored energy. These findings highlight the critical role of fin geometry in improving PCM efficiency, enabling effective solar energy storage for extended use, and advancing sustainable alternatives to conventional cooking fuels.
太阳能蒸煮蓄热系统中增强PCM凝固的翅片几何优化:数值模拟与实验验证
本研究通过优化相变材料(PCM)的翅片尺寸来解决相变材料在放电过程中导热系数低的问题,研究了相变材料(PCM)在太阳能烹饪应用中的传热增强。通过数值和实验分析,评估了翅片长度和厚度对凝固时间和能量储存能力的影响,以平衡传热改善和PCM体积减小之间的权衡。采用ANSYS 16.0进行计算流体动力学(CFD)模拟,响应面法(RSM)进行设计优化,采用熔点为142℃、潜热为110 kJ/kg的太阳盐(53% KNO3、6% NaNO3、41% NaNO2)。关键参数包括鳍长(70 - 140 mm)和厚度(0.8 - 1.5 mm),实验验证。结果表明,增加翅片长度的效果明显优于增加翅片厚度的效果;与无翅片系统相比,厚度为1.5 mm、长度为140 mm的翅片可缩短凝固时间65.97%。RSM优化确定了厚度为0.8 mm、长度为140 mm的翅片结构为最佳,在10.21小时内实现了完全凝固,同时释放了2237.91 kJ的储能。这些发现强调了翅片几何结构在提高PCM效率、实现有效的太阳能储存以供长期使用以及推进传统烹饪燃料的可持续替代品方面的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信