{"title":"Decay estimates for beam equations with potentials on the line","authors":"Shuangshuang Chen , Zijun Wan , Xiaohua Yao","doi":"10.1016/j.jde.2025.113418","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is devoted to the time decay estimates for the following beam equation with a potential:<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msubsup><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mi>u</mi><mo>+</mo><mrow><mo>(</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo></mrow><mi>u</mi><mo>=</mo><mn>0</mn><mo>,</mo></mtd><mtd><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo><mo>∈</mo><mi>R</mi><mo>×</mo><mi>R</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>(</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mspace></mspace><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>(</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo></mtd><mtd></mtd></mtr></mtable></mrow></math></span></span></span> where <em>V</em> is a real-valued decaying potential on <span><math><mi>R</mi></math></span>, and <span><math><mi>m</mi><mo>∈</mo><mi>R</mi></math></span>.</div><div>Let <span><math><mi>H</mi><mo>=</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>V</mi></math></span> and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>a</mi><mi>c</mi></mrow></msub><mo>(</mo><mi>H</mi><mo>)</mo></math></span> denote the projection onto the absolutely continuous spectrum of <em>H</em>. Then for <span><math><mi>m</mi><mo>=</mo><mn>0</mn></math></span>, we establish the following decay estimates of the solution operators:<span><span><span><math><msub><mrow><mo>‖</mo><mi>cos</mi><mo></mo><mo>(</mo><mi>t</mi><msqrt><mrow><mi>H</mi></mrow></msqrt><mo>)</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>a</mi><mi>c</mi></mrow></msub><mo>(</mo><mi>H</mi><mo>)</mo><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></mrow></msub><mo>+</mo><msub><mrow><mo>‖</mo><mfrac><mrow><mi>sin</mi><mo></mo><mo>(</mo><mi>t</mi><msqrt><mrow><mi>H</mi></mrow></msqrt><mo>)</mo></mrow><mrow><mi>t</mi><msqrt><mrow><mi>H</mi></mrow></msqrt></mrow></mfrac><msub><mrow><mi>P</mi></mrow><mrow><mi>a</mi><mi>c</mi></mrow></msub><mo>(</mo><mi>H</mi><mo>)</mo><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></mrow></msub><mo>≲</mo><mo>|</mo><mi>t</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>.</mo></math></span></span></span> But for <span><math><mi>m</mi><mo>≠</mo><mn>0</mn></math></span>, the solutions have different time decay estimates from the case where <span><math><mi>m</mi><mo>=</mo><mn>0</mn></math></span>. Specifically, the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-<span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> estimates of <span><math><mi>cos</mi><mo></mo><mo>(</mo><mi>t</mi><msqrt><mrow><mi>H</mi><mo>+</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt><mo>)</mo></math></span> and <span><math><mfrac><mrow><mi>sin</mi><mo></mo><mo>(</mo><mi>t</mi><msqrt><mrow><mi>H</mi><mo>+</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt><mo>)</mo></mrow><mrow><msqrt><mrow><mi>H</mi><mo>+</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt></mrow></mfrac></math></span> are bounded by <span><math><mi>O</mi><mo>(</mo><mo>|</mo><mi>t</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mrow></msup><mo>)</mo></math></span> in the low-energy part and <span><math><mi>O</mi><mo>(</mo><mo>|</mo><mi>t</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>)</mo></math></span> in the high-energy part.</div><div>It is noteworthy that all these results remain consistent with the free cases (i.e., <span><math><mi>V</mi><mo>=</mo><mn>0</mn></math></span>) whatever zero is a regular point or a resonance of <em>H</em>. As consequences, we establish the corresponding Strichartz estimates, which are fundamental to study nonlinear problems of beam equations.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"439 ","pages":"Article 113418"},"PeriodicalIF":2.3000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625004450","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is devoted to the time decay estimates for the following beam equation with a potential: where V is a real-valued decaying potential on , and .
Let and denote the projection onto the absolutely continuous spectrum of H. Then for , we establish the following decay estimates of the solution operators: But for , the solutions have different time decay estimates from the case where . Specifically, the - estimates of and are bounded by in the low-energy part and in the high-energy part.
It is noteworthy that all these results remain consistent with the free cases (i.e., ) whatever zero is a regular point or a resonance of H. As consequences, we establish the corresponding Strichartz estimates, which are fundamental to study nonlinear problems of beam equations.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics