Decay estimates for beam equations with potentials on the line

IF 2.3 2区 数学 Q1 MATHEMATICS
Shuangshuang Chen , Zijun Wan , Xiaohua Yao
{"title":"Decay estimates for beam equations with potentials on the line","authors":"Shuangshuang Chen ,&nbsp;Zijun Wan ,&nbsp;Xiaohua Yao","doi":"10.1016/j.jde.2025.113418","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is devoted to the time decay estimates for the following beam equation with a potential:<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msubsup><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mi>u</mi><mo>+</mo><mrow><mo>(</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo></mrow><mi>u</mi><mo>=</mo><mn>0</mn><mo>,</mo></mtd><mtd><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo><mo>∈</mo><mi>R</mi><mo>×</mo><mi>R</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>(</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mspace></mspace><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>(</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo></mtd><mtd></mtd></mtr></mtable></mrow></math></span></span></span> where <em>V</em> is a real-valued decaying potential on <span><math><mi>R</mi></math></span>, and <span><math><mi>m</mi><mo>∈</mo><mi>R</mi></math></span>.</div><div>Let <span><math><mi>H</mi><mo>=</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>V</mi></math></span> and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>a</mi><mi>c</mi></mrow></msub><mo>(</mo><mi>H</mi><mo>)</mo></math></span> denote the projection onto the absolutely continuous spectrum of <em>H</em>. Then for <span><math><mi>m</mi><mo>=</mo><mn>0</mn></math></span>, we establish the following decay estimates of the solution operators:<span><span><span><math><msub><mrow><mo>‖</mo><mi>cos</mi><mo>⁡</mo><mo>(</mo><mi>t</mi><msqrt><mrow><mi>H</mi></mrow></msqrt><mo>)</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>a</mi><mi>c</mi></mrow></msub><mo>(</mo><mi>H</mi><mo>)</mo><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></mrow></msub><mo>+</mo><msub><mrow><mo>‖</mo><mfrac><mrow><mi>sin</mi><mo>⁡</mo><mo>(</mo><mi>t</mi><msqrt><mrow><mi>H</mi></mrow></msqrt><mo>)</mo></mrow><mrow><mi>t</mi><msqrt><mrow><mi>H</mi></mrow></msqrt></mrow></mfrac><msub><mrow><mi>P</mi></mrow><mrow><mi>a</mi><mi>c</mi></mrow></msub><mo>(</mo><mi>H</mi><mo>)</mo><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></mrow></msub><mo>≲</mo><mo>|</mo><mi>t</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>.</mo></math></span></span></span> But for <span><math><mi>m</mi><mo>≠</mo><mn>0</mn></math></span>, the solutions have different time decay estimates from the case where <span><math><mi>m</mi><mo>=</mo><mn>0</mn></math></span>. Specifically, the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-<span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> estimates of <span><math><mi>cos</mi><mo>⁡</mo><mo>(</mo><mi>t</mi><msqrt><mrow><mi>H</mi><mo>+</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt><mo>)</mo></math></span> and <span><math><mfrac><mrow><mi>sin</mi><mo>⁡</mo><mo>(</mo><mi>t</mi><msqrt><mrow><mi>H</mi><mo>+</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt><mo>)</mo></mrow><mrow><msqrt><mrow><mi>H</mi><mo>+</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt></mrow></mfrac></math></span> are bounded by <span><math><mi>O</mi><mo>(</mo><mo>|</mo><mi>t</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mrow></msup><mo>)</mo></math></span> in the low-energy part and <span><math><mi>O</mi><mo>(</mo><mo>|</mo><mi>t</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>)</mo></math></span> in the high-energy part.</div><div>It is noteworthy that all these results remain consistent with the free cases (i.e., <span><math><mi>V</mi><mo>=</mo><mn>0</mn></math></span>) whatever zero is a regular point or a resonance of <em>H</em>. As consequences, we establish the corresponding Strichartz estimates, which are fundamental to study nonlinear problems of beam equations.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"439 ","pages":"Article 113418"},"PeriodicalIF":2.3000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625004450","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is devoted to the time decay estimates for the following beam equation with a potential:{t2u+(Δ2+m2+V(x))u=0,(t,x)R×R,u(0,x)=f(x),tu(0,x)=g(x), where V is a real-valued decaying potential on R, and mR.
Let H=Δ2+V and Pac(H) denote the projection onto the absolutely continuous spectrum of H. Then for m=0, we establish the following decay estimates of the solution operators:cos(tH)Pac(H)L1L+sin(tH)tHPac(H)L1L|t|12. But for m0, the solutions have different time decay estimates from the case where m=0. Specifically, the L1-L estimates of cos(tH+m2) and sin(tH+m2)H+m2 are bounded by O(|t|14) in the low-energy part and O(|t|12) in the high-energy part.
It is noteworthy that all these results remain consistent with the free cases (i.e., V=0) whatever zero is a regular point or a resonance of H. As consequences, we establish the corresponding Strichartz estimates, which are fundamental to study nonlinear problems of beam equations.
具有电位的束流方程的衰减估计
本文研究了下列具有势的束方程的时间衰减估计:{∂t2u+(Δ2+m2+V(x))u=0,(t,x)∈R×R,u(0,x)=f(x),∂tu(0,x)=g(x),其中V是R上的实值衰减势,m∈R。设H=Δ2+V, Pac(H)表示H在绝对连续谱上的投影。然后,对于m=0,我们建立了以下解算子的衰减估计:‖cos (tH)Pac(H)‖L1→L∞+‖sin (tH)tHPac(H)‖L1→L∞> |t|−12。但当m≠0时,解的时间衰减估计与m=0时不同。具体来说,cos (tH+m2)和sin (tH+m2)H+m2的L1-L∞估计在低能部分以O(|t|−14)和高能部分以O(|t|−12)为界。值得注意的是,所有这些结果都与自由情况(即V=0)保持一致,无论零是正则点还是h的共振,作为结果,我们建立了相应的Strichartz估计,这是研究梁方程非线性问题的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信