{"title":"Selective RNA binding and imaging with imidazopyrazine-based fluorescent molecule","authors":"Zekiye Şeyma Sevinçli , Karina Amudi , Buse Ceyda Öncel , Erkan Yurtcu , Özlem Darcansoy İşeri , Nurettin Menges","doi":"10.1016/j.saa.2025.126382","DOIUrl":null,"url":null,"abstract":"<div><div>We report the synthesis and characterization of novel imidazopyrazine-based fluorescent molecules <strong>5a</strong> and <strong>5b</strong> targeting RNA and DNA binding. Molecule <strong>5b</strong> showed superior photophysical properties with stable fluorescence and high quantum yield in various solvents. UV–Vis and fluorescence spectroscopy revealed strong RNA binding with time-dependent fluorescence quenching and increasing absorbance, suggesting groove binding or π-π stacking interactions. Furthermore, agarose gel electrophoresis further confirmed selective RNA binding of <strong>5b</strong>. Imaging studies demonstrated that <strong>5b</strong> penetrated into viable MCF-7 cells and selectively stained RNA and retained fluorescence for up to 8 h under ambient conditions. These findings advance the study of RNA dynamics in living cells, highlighting the potential of <strong>5b</strong> for RNA-specific bioimaging and sensing applications.</div></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":"340 ","pages":"Article 126382"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386142525006882","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
We report the synthesis and characterization of novel imidazopyrazine-based fluorescent molecules 5a and 5b targeting RNA and DNA binding. Molecule 5b showed superior photophysical properties with stable fluorescence and high quantum yield in various solvents. UV–Vis and fluorescence spectroscopy revealed strong RNA binding with time-dependent fluorescence quenching and increasing absorbance, suggesting groove binding or π-π stacking interactions. Furthermore, agarose gel electrophoresis further confirmed selective RNA binding of 5b. Imaging studies demonstrated that 5b penetrated into viable MCF-7 cells and selectively stained RNA and retained fluorescence for up to 8 h under ambient conditions. These findings advance the study of RNA dynamics in living cells, highlighting the potential of 5b for RNA-specific bioimaging and sensing applications.
期刊介绍:
Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science.
The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments.
Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate.
Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to:
Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences,
Novel experimental techniques or instrumentation for molecular spectroscopy,
Novel theoretical and computational methods,
Novel applications in photochemistry and photobiology,
Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.