Verónica Mieites , María Gabriela Fernández-Manteca , Inés Santiuste Torcida , Fidel Madrazo Toca , María José Marín Vidalled , Olga M. Conde
{"title":"Assessment of blood serum stability with Raman spectroscopy and explanatory AI","authors":"Verónica Mieites , María Gabriela Fernández-Manteca , Inés Santiuste Torcida , Fidel Madrazo Toca , María José Marín Vidalled , Olga M. Conde","doi":"10.1016/j.saa.2025.126297","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the potential of conventional Raman spectroscopy and commonly used spectral analysis pipelines for rapid and straightforward assessment of degradation in serum samples resulting from storage delays. Serum samples from 18 volunteers were processed within 2 h of extraction, which later on were analyzed via Raman spectroscopy over 4 days, while the corresponding serum vials were kept at room temperature. The resulting spectra were processed, including silicon normalization and a newly proposed outlier detection ensemble method. Next, baseline correction was performed, and spectral unmixing along with Principal Component Analysis (PCA) were applied. Several classification models (KNN, RF, and SVM) were trained and evaluated on three distinct balanced datasets: one including all data, one excluding low signal-to-noise ratio (SNR) data, and one excluding low-SNR data with baseline correction. Feature importance, assessed through random permutations, was used for explainability.</div><div>Spectral unmixing and PCA indicated limited spectral changes directly attributable to analyte degradation, with inter- and intra-sample variability dominating. Classification results showed that while removing the baseline led to inconclusive results, models trained on datasets retaining the baseline effectively identified non-degraded samples. These findings suggest that while conventional Raman spectroscopy may not be optimally sensitive to subtle analyte variations in serum stored at room temperature, the auto-fluorescence background holds promise as a potential biomarker for monitoring serum storage quality.</div></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":"340 ","pages":"Article 126297"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386142525006031","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the potential of conventional Raman spectroscopy and commonly used spectral analysis pipelines for rapid and straightforward assessment of degradation in serum samples resulting from storage delays. Serum samples from 18 volunteers were processed within 2 h of extraction, which later on were analyzed via Raman spectroscopy over 4 days, while the corresponding serum vials were kept at room temperature. The resulting spectra were processed, including silicon normalization and a newly proposed outlier detection ensemble method. Next, baseline correction was performed, and spectral unmixing along with Principal Component Analysis (PCA) were applied. Several classification models (KNN, RF, and SVM) were trained and evaluated on three distinct balanced datasets: one including all data, one excluding low signal-to-noise ratio (SNR) data, and one excluding low-SNR data with baseline correction. Feature importance, assessed through random permutations, was used for explainability.
Spectral unmixing and PCA indicated limited spectral changes directly attributable to analyte degradation, with inter- and intra-sample variability dominating. Classification results showed that while removing the baseline led to inconclusive results, models trained on datasets retaining the baseline effectively identified non-degraded samples. These findings suggest that while conventional Raman spectroscopy may not be optimally sensitive to subtle analyte variations in serum stored at room temperature, the auto-fluorescence background holds promise as a potential biomarker for monitoring serum storage quality.
期刊介绍:
Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science.
The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments.
Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate.
Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to:
Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences,
Novel experimental techniques or instrumentation for molecular spectroscopy,
Novel theoretical and computational methods,
Novel applications in photochemistry and photobiology,
Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.