Yongmin Zheng , Chen Qi , Yangyi Qiao , Kang Liu , Yanxia Wang , Wankui Jiang , Yujia Jiang , Fengxue Xin , Feng Guo , Wenming Zhang , Min Jiang
{"title":"From formate oxidation to CO₂ reduction: The role of formate dehydrogenase in sustainable carbon utilization","authors":"Yongmin Zheng , Chen Qi , Yangyi Qiao , Kang Liu , Yanxia Wang , Wankui Jiang , Yujia Jiang , Fengxue Xin , Feng Guo , Wenming Zhang , Min Jiang","doi":"10.1016/j.biotechadv.2025.108600","DOIUrl":null,"url":null,"abstract":"<div><div>The escalation of global climate change and environmental degradation has made it imperative to develop innovative strategies to mitigate carbon dioxide (CO₂) emissions and enhance its utilization. Formate dehydrogenase (FDH) is a key enzyme capable of catalyzing the reversible conversion between CO₂ and formate. Due to its critical role in sustainable carbon recycling processes, FDH has garnered significant attention in recent times. This review offers a thorough analysis of FDH, emphasizing its dual function of converting one carbon (C1) substrates and providing reducing power. Recent advancements in utilizing FDH for CO₂ reduction, both <em>in vitro</em> and <em>in vivo</em>, underscoring its potential to facilitate carbon capture and conversion under mild conditions. Additionally, this review discusses the limitations of FDH in C1 metabolism and proposes targeted strategies to address these challenges. Future research should focus on achieving a balance between energy production and carbon assimilation, mediated by FDH activity. Ultimately, this work aims to offer both theoretical insights and practical guidance, advancing microbial engineering for CO₂ reduction and resource recycling, and contributing to the development of sustainable carbon utilization technologies.</div></div>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":"82 ","pages":"Article 108600"},"PeriodicalIF":12.1000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology advances","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0734975025000862","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The escalation of global climate change and environmental degradation has made it imperative to develop innovative strategies to mitigate carbon dioxide (CO₂) emissions and enhance its utilization. Formate dehydrogenase (FDH) is a key enzyme capable of catalyzing the reversible conversion between CO₂ and formate. Due to its critical role in sustainable carbon recycling processes, FDH has garnered significant attention in recent times. This review offers a thorough analysis of FDH, emphasizing its dual function of converting one carbon (C1) substrates and providing reducing power. Recent advancements in utilizing FDH for CO₂ reduction, both in vitro and in vivo, underscoring its potential to facilitate carbon capture and conversion under mild conditions. Additionally, this review discusses the limitations of FDH in C1 metabolism and proposes targeted strategies to address these challenges. Future research should focus on achieving a balance between energy production and carbon assimilation, mediated by FDH activity. Ultimately, this work aims to offer both theoretical insights and practical guidance, advancing microbial engineering for CO₂ reduction and resource recycling, and contributing to the development of sustainable carbon utilization technologies.
期刊介绍:
Biotechnology Advances is a comprehensive review journal that covers all aspects of the multidisciplinary field of biotechnology. The journal focuses on biotechnology principles and their applications in various industries, agriculture, medicine, environmental concerns, and regulatory issues. It publishes authoritative articles that highlight current developments and future trends in the field of biotechnology. The journal invites submissions of manuscripts that are relevant and appropriate. It targets a wide audience, including scientists, engineers, students, instructors, researchers, practitioners, managers, governments, and other stakeholders in the field. Additionally, special issues are published based on selected presentations from recent relevant conferences in collaboration with the organizations hosting those conferences.