Representation theory of very non-standard quantum so(2N−1)

IF 0.7 2区 数学 Q2 MATHEMATICS
Stefan Kolb, Jake Stephens
{"title":"Representation theory of very non-standard quantum so(2N−1)","authors":"Stefan Kolb,&nbsp;Jake Stephens","doi":"10.1016/j.jpaa.2025.107990","DOIUrl":null,"url":null,"abstract":"<div><div>We classify the finite dimensional representations of the quantum symmetric pair coideal subalgebra <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> of type <em>DII</em> corresponding to the symmetric pair <span><math><mo>(</mo><mrow><mi>so</mi></mrow><mo>(</mo><mn>2</mn><mi>N</mi><mo>)</mo><mo>,</mo><mrow><mi>so</mi></mrow><mo>(</mo><mn>2</mn><mi>N</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>)</mo></math></span>. For <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> defined over an arbitrary field <em>k</em> and <span><math><mi>q</mi><mo>∈</mo><mi>k</mi><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span> not a root of unity we establish a one-to-one correspondence between finite dimensional, simple <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>-modules and dominant integral weights for <span><math><mrow><mi>so</mi></mrow><mo>(</mo><mn>2</mn><mi>N</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>. We use specialisation to show that the category of finite dimensional <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>-modules is semisimple if <span><math><mrow><mi>char</mi></mrow><mo>(</mo><mi>k</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span> and <em>q</em> is transcendental over <span><math><mi>Q</mi></math></span>. In this case the characters of simple <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>-modules are given by Weyl's character formula. This means in particular that the quantum symmetric pair of type <em>DII</em> can be used to obtain Gelfand-Tsetlin bases for irreducible representations of the Drinfeld-Jimbo quantum group <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mrow><mi>so</mi></mrow><mo>(</mo><mn>2</mn><mi>N</mi><mo>)</mo><mo>)</mo></math></span>.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 7","pages":"Article 107990"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002240492500129X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We classify the finite dimensional representations of the quantum symmetric pair coideal subalgebra Bc of type DII corresponding to the symmetric pair (so(2N),so(2N1)). For Bc defined over an arbitrary field k and qk{0} not a root of unity we establish a one-to-one correspondence between finite dimensional, simple Bc-modules and dominant integral weights for so(2N1). We use specialisation to show that the category of finite dimensional Bc-modules is semisimple if char(k)=0 and q is transcendental over Q. In this case the characters of simple Bc-modules are given by Weyl's character formula. This means in particular that the quantum symmetric pair of type DII can be used to obtain Gelfand-Tsetlin bases for irreducible representations of the Drinfeld-Jimbo quantum group Uq(so(2N)).
非标准量子so(2N−1)的表示理论
我们分类了DII型量子对称对共理想子代数Bc对应于对称对(so(2N),so(2N−1))的有限维表示。对于定义在任意域k上的Bc,且q∈k∈{0}不是单位根,我们建立了有限维简单Bc模与so(2N−1)的优势积分权之间的一一对应关系。我们利用专一化证明了有限维bc模的范畴是半简单的,如果char(k)=0且q是超越q的。在这种情况下,简单bc模的特征由Weyl的特征公式给出。这特别意味着DII型量子对称对可以用来获得Drinfeld-Jimbo量子群Uq(so(2N))的不可约表示的Gelfand-Tsetlin基。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信