{"title":"Evolutionary trajectories of multiple defense traits across phylogenetic and geographic scales in Vitis","authors":"Carolyn D. K. Graham, Marjorie G. Weber","doi":"10.1002/ecog.07722","DOIUrl":null,"url":null,"abstract":"The processes driving defense trait correlations may vary within and between species based on ecological or environmental contexts. However, most studies of plant defense theory fail to address this potential for shifts in trait correlations across scales. In this work, we tested for correlations between multiple defensive traits (secondary chemistry, carbon to nitrogen ratio, domatia, leaf toughness, trichomes, and pearl bodies) across a common garden of 21 <i>Vitis</i> species and eighteen genotypes of the species <i>Vitis riparia</i> to identify when and where patterns of defense trait evolution persist or break down across biological scales. Additionally, we asked whether <i>Vitis</i> defense trait investment correlates with environmental variables as predicted by plant defense theory, using environmental metrics for each <i>Vitis</i> species and <i>V. riparia</i> genotype from the GBIF and WorldClim databases. We tested for correlations between defense trait investment, herbivore palatability, and environmental variables using phylogenetically informed models. Beyond a few likely physiological exceptions, we observed a lack of significant correlations between defense traits at both intra- and interspecific scales, indicating that these traits evolve independently of each other in <i>Vitis</i> rather than forming predictable defense syndromes. We did find that investment in carbon:nitrogen (at both scales) and pearl bodies increases with proximity to the equator, demonstrating support for plant defense theory's prediction of higher investment in defenses at more equatorial environments for some, but not all, defense traits. Overall, our results challenge commonly held hypotheses about plant defense evolution, namely the concept of syndromes, by demonstrating that strong correlations between defense traits are not the prevailing pattern both across and within <i>Vitis</i> species. Our work also provides the first comprehensive evaluation of the evolutionary divergence in approaches that <i>Vitis</i>, a genus with significant agricultural value, have evolved to defend themselves against herbivores.","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"11 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecography","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/ecog.07722","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
The processes driving defense trait correlations may vary within and between species based on ecological or environmental contexts. However, most studies of plant defense theory fail to address this potential for shifts in trait correlations across scales. In this work, we tested for correlations between multiple defensive traits (secondary chemistry, carbon to nitrogen ratio, domatia, leaf toughness, trichomes, and pearl bodies) across a common garden of 21 Vitis species and eighteen genotypes of the species Vitis riparia to identify when and where patterns of defense trait evolution persist or break down across biological scales. Additionally, we asked whether Vitis defense trait investment correlates with environmental variables as predicted by plant defense theory, using environmental metrics for each Vitis species and V. riparia genotype from the GBIF and WorldClim databases. We tested for correlations between defense trait investment, herbivore palatability, and environmental variables using phylogenetically informed models. Beyond a few likely physiological exceptions, we observed a lack of significant correlations between defense traits at both intra- and interspecific scales, indicating that these traits evolve independently of each other in Vitis rather than forming predictable defense syndromes. We did find that investment in carbon:nitrogen (at both scales) and pearl bodies increases with proximity to the equator, demonstrating support for plant defense theory's prediction of higher investment in defenses at more equatorial environments for some, but not all, defense traits. Overall, our results challenge commonly held hypotheses about plant defense evolution, namely the concept of syndromes, by demonstrating that strong correlations between defense traits are not the prevailing pattern both across and within Vitis species. Our work also provides the first comprehensive evaluation of the evolutionary divergence in approaches that Vitis, a genus with significant agricultural value, have evolved to defend themselves against herbivores.
期刊介绍:
ECOGRAPHY publishes exciting, novel, and important articles that significantly advance understanding of ecological or biodiversity patterns in space or time. Papers focusing on conservation or restoration are welcomed, provided they are anchored in ecological theory and convey a general message that goes beyond a single case study. We encourage papers that seek advancing the field through the development and testing of theory or methodology, or by proposing new tools for analysis or interpretation of ecological phenomena. Manuscripts are expected to address general principles in ecology, though they may do so using a specific model system if they adequately frame the problem relative to a generalized ecological question or problem.
Purely descriptive papers are considered only if breaking new ground and/or describing patterns seldom explored. Studies focused on a single species or single location are generally discouraged unless they make a significant contribution to advancing general theory or understanding of biodiversity patterns and processes. Manuscripts merely confirming or marginally extending results of previous work are unlikely to be considered in Ecography.
Papers are judged by virtue of their originality, appeal to general interest, and their contribution to new developments in studies of spatial and temporal ecological patterns. There are no biases with regard to taxon, biome, or biogeographical area.