Targeting mesenchymal monocyte-derived macrophages to enhance the sensitivity of glioblastoma to temozolomide by inhibiting TNF/CELSR2/p65/Kla-HDAC1/EPAS1 axis
{"title":"Targeting mesenchymal monocyte-derived macrophages to enhance the sensitivity of glioblastoma to temozolomide by inhibiting TNF/CELSR2/p65/Kla-HDAC1/EPAS1 axis","authors":"Wei Gao, Xinmiao Long, Xiang Lin, Kun Deng, Danyang Li, Meng Huang, Xiangyu Wang, Qing Liu, Minghua Wu","doi":"10.1016/j.jare.2025.05.032","DOIUrl":null,"url":null,"abstract":"<h3>Introduction</h3>Temozolomide (TMZ) resistance poses a significant challenge to the treatment of aggressive and highly lethal glioblastomas (GBM). Monocyte-derived Macrophages (MDM) within the tumor microenvironment are key factors contributing to TMZ resistance in GBM. Lactate-mediated histone lysine lactylation (Kla) plays a crucial role in the regulation of tumor progression. However, the mechanism through which MDM-induced Kla expression promotes TMZ resistance in GBM remains unclear.<h3>Objectives</h3>The objective of this study s to identify a subtype of MDM with therapeutic potential target and to elucidate the mechanisms through which this subtype of MDM contributes to tumor malignant progression and TMZ resistance.<h3>Methods</h3>We integrated single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics data to evaluate whether mesenchymal (MES) MDM is associated with poor prognosis. By establishing a subtype model of GBM cells for the first time, we validated the mechanism by which MES-MDM promotes subtype conversion of tumor cells. Using patient-derived GBM organoids and an intracranial orthotopic GBM model, we demonstrated that targeting MES-MDMs increased GBM sensitivity to TMZ treatment.<h3>Results</h3>We identified a novel MDM subtype, MES-MDM, in the hypoxic niches of the perinecrotic region characterized by high TREM1 expression, which fueled GBM progression. Hypoxia drived MES-MDM signatures by activating ATF3 transcription. MES-MDM facilitated the transition from the NPC to the MES subtype in GBM cells, in which Histone Deacetylase 1 (HDAC1) Kla, induced by the TNF-CELSR2/p65 signaling pathway, promoted this conversion, thereby promoting TMZ resistance. Targeting MES-MDM with TREM1 inhibitory peptides amplified TMZ sensitivity, offering a potential strategy for overcoming resistance to therapy in GBM. Targeting TREM1 enhanced the effectiveness of anti-PD-1 immunotherapy.<h3>Conclusion</h3>This study provides a potential therapeutic strategy for patients with MES-subtype GBM by targeting MES-MDMs in combination with TMZ or PD-1 antibody treatment.","PeriodicalId":14952,"journal":{"name":"Journal of Advanced Research","volume":"17 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.jare.2025.05.032","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
Temozolomide (TMZ) resistance poses a significant challenge to the treatment of aggressive and highly lethal glioblastomas (GBM). Monocyte-derived Macrophages (MDM) within the tumor microenvironment are key factors contributing to TMZ resistance in GBM. Lactate-mediated histone lysine lactylation (Kla) plays a crucial role in the regulation of tumor progression. However, the mechanism through which MDM-induced Kla expression promotes TMZ resistance in GBM remains unclear.
Objectives
The objective of this study s to identify a subtype of MDM with therapeutic potential target and to elucidate the mechanisms through which this subtype of MDM contributes to tumor malignant progression and TMZ resistance.
Methods
We integrated single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics data to evaluate whether mesenchymal (MES) MDM is associated with poor prognosis. By establishing a subtype model of GBM cells for the first time, we validated the mechanism by which MES-MDM promotes subtype conversion of tumor cells. Using patient-derived GBM organoids and an intracranial orthotopic GBM model, we demonstrated that targeting MES-MDMs increased GBM sensitivity to TMZ treatment.
Results
We identified a novel MDM subtype, MES-MDM, in the hypoxic niches of the perinecrotic region characterized by high TREM1 expression, which fueled GBM progression. Hypoxia drived MES-MDM signatures by activating ATF3 transcription. MES-MDM facilitated the transition from the NPC to the MES subtype in GBM cells, in which Histone Deacetylase 1 (HDAC1) Kla, induced by the TNF-CELSR2/p65 signaling pathway, promoted this conversion, thereby promoting TMZ resistance. Targeting MES-MDM with TREM1 inhibitory peptides amplified TMZ sensitivity, offering a potential strategy for overcoming resistance to therapy in GBM. Targeting TREM1 enhanced the effectiveness of anti-PD-1 immunotherapy.
Conclusion
This study provides a potential therapeutic strategy for patients with MES-subtype GBM by targeting MES-MDMs in combination with TMZ or PD-1 antibody treatment.
期刊介绍:
Journal of Advanced Research (J. Adv. Res.) is an applied/natural sciences, peer-reviewed journal that focuses on interdisciplinary research. The journal aims to contribute to applied research and knowledge worldwide through the publication of original and high-quality research articles in the fields of Medicine, Pharmaceutical Sciences, Dentistry, Physical Therapy, Veterinary Medicine, and Basic and Biological Sciences.
The following abstracting and indexing services cover the Journal of Advanced Research: PubMed/Medline, Essential Science Indicators, Web of Science, Scopus, PubMed Central, PubMed, Science Citation Index Expanded, Directory of Open Access Journals (DOAJ), and INSPEC.