{"title":"Scalable Membrane Enabled One-Pot Liquid-Phase Oligonucleotide Synthesis","authors":"Ronan Kelly, Catalina Parga, Steven Ferguson","doi":"10.1021/acs.oprd.5c00117","DOIUrl":null,"url":null,"abstract":"In this article, a new one-pot liquid-phase oligonucleotide synthesis (OP-LPOS) route enabled by organic solvent resistant (OSR) ceramic membranes is described. This approach was demonstrated through the synthesis of 6mer and 18mer 2’-OMe phosphorothioate oligonucleotides with high stepwise filtration yields (97–100%), and high crude purity (∼72% for 18mer) using just 1.5 equiv of phosphoramidites. Ceramic organic solvent nanofiltration (OSN) and ultrafiltration (OSU) membranes were used to selectively retain the growing oligonucleotide, which is reversibly tethered to a 4-arm branched PEG support, facilitating lower molecular weight reaction byproducts to permeate to waste. This is the first application of ceramic ultrafiltration membranes in such an application, which enables purification of intermediate products in just 5 diavolumes with high permeance (13 Lm<sup>–2</sup> h<sup>–1</sup> bar<sup>–1</sup>). We employ a one-pot approach that integrates sequential coupling, sulfurization, and detritylation steps, followed by a single membrane purification step per chain extension cycle. Analysis of the methodology indicates that the homogeneous reactions and separation performance, which use commercially available reagents and highly scalable membrane systems, represent a promising alternative to solid-phase oligonucleotide synthesis (SPOS) for large-scale manufacturing of therapeutic oligonucleotides. Furthermore, the combination of OP-LPOS with membrane separation increases intermediate product purity and yield. It reduces the number of unit operations, cycle times, and process mass intensity (PMI) compared to the previous state-of-the-art membrane-based LPOS.","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"115 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Process Research & Development","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.oprd.5c00117","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, a new one-pot liquid-phase oligonucleotide synthesis (OP-LPOS) route enabled by organic solvent resistant (OSR) ceramic membranes is described. This approach was demonstrated through the synthesis of 6mer and 18mer 2’-OMe phosphorothioate oligonucleotides with high stepwise filtration yields (97–100%), and high crude purity (∼72% for 18mer) using just 1.5 equiv of phosphoramidites. Ceramic organic solvent nanofiltration (OSN) and ultrafiltration (OSU) membranes were used to selectively retain the growing oligonucleotide, which is reversibly tethered to a 4-arm branched PEG support, facilitating lower molecular weight reaction byproducts to permeate to waste. This is the first application of ceramic ultrafiltration membranes in such an application, which enables purification of intermediate products in just 5 diavolumes with high permeance (13 Lm–2 h–1 bar–1). We employ a one-pot approach that integrates sequential coupling, sulfurization, and detritylation steps, followed by a single membrane purification step per chain extension cycle. Analysis of the methodology indicates that the homogeneous reactions and separation performance, which use commercially available reagents and highly scalable membrane systems, represent a promising alternative to solid-phase oligonucleotide synthesis (SPOS) for large-scale manufacturing of therapeutic oligonucleotides. Furthermore, the combination of OP-LPOS with membrane separation increases intermediate product purity and yield. It reduces the number of unit operations, cycle times, and process mass intensity (PMI) compared to the previous state-of-the-art membrane-based LPOS.
期刊介绍:
The journal Organic Process Research & Development serves as a communication tool between industrial chemists and chemists working in universities and research institutes. As such, it reports original work from the broad field of industrial process chemistry but also presents academic results that are relevant, or potentially relevant, to industrial applications. Process chemistry is the science that enables the safe, environmentally benign and ultimately economical manufacturing of organic compounds that are required in larger amounts to help address the needs of society. Consequently, the Journal encompasses every aspect of organic chemistry, including all aspects of catalysis, synthetic methodology development and synthetic strategy exploration, but also includes aspects from analytical and solid-state chemistry and chemical engineering, such as work-up tools,process safety, or flow-chemistry. The goal of development and optimization of chemical reactions and processes is their transfer to a larger scale; original work describing such studies and the actual implementation on scale is highly relevant to the journal. However, studies on new developments from either industry, research institutes or academia that have not yet been demonstrated on scale, but where an industrial utility can be expected and where the study has addressed important prerequisites for a scale-up and has given confidence into the reliability and practicality of the chemistry, also serve the mission of OPR&D as a communication tool between the different contributors to the field.