Waste oxidation as a pathway to energy-efficient electrochemical processes

IF 11.5 Q1 CHEMISTRY, PHYSICAL
Emilly Cristine de Brito Dorneles, Kirsten Van Fossen, Anna Li, Magda Helena Barecka
{"title":"Waste oxidation as a pathway to energy-efficient electrochemical processes","authors":"Emilly Cristine de Brito Dorneles, Kirsten Van Fossen, Anna Li, Magda Helena Barecka","doi":"10.1016/j.checat.2025.101392","DOIUrl":null,"url":null,"abstract":"The large-scale availability of low-carbon hydrogen is critical for achieving the net zero 2050 goal, yet researchers are questioning whether the planned expansion of the renewable energy network will be sufficient to meet this demand. In the pursuit of alternative pathways to yield hydrogen, anodic oxidation reactions (AORs) are attracting much attention from the catalysis community. However, these systems are mostly studied on a small scale, and insights into their commercial application are missing. To bridge this gap, we postulate that AOR catalysts should be further developed and tested under conditions closer to real-life applications. We defined these applications from a system-level perspective and provided a practical framework to translate complex environments into conditions that can be tested under academic wet lab limitations. The proposed framework also supports the collaboration toward developing partnering technologies (e.g., separations) needed for a large-scale hydrogen supply from AORs.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"96 1","pages":""},"PeriodicalIF":11.5000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2025.101392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The large-scale availability of low-carbon hydrogen is critical for achieving the net zero 2050 goal, yet researchers are questioning whether the planned expansion of the renewable energy network will be sufficient to meet this demand. In the pursuit of alternative pathways to yield hydrogen, anodic oxidation reactions (AORs) are attracting much attention from the catalysis community. However, these systems are mostly studied on a small scale, and insights into their commercial application are missing. To bridge this gap, we postulate that AOR catalysts should be further developed and tested under conditions closer to real-life applications. We defined these applications from a system-level perspective and provided a practical framework to translate complex environments into conditions that can be tested under academic wet lab limitations. The proposed framework also supports the collaboration toward developing partnering technologies (e.g., separations) needed for a large-scale hydrogen supply from AORs.

Abstract Image

废物氧化是实现节能电化学过程的途径
低碳氢的大规模可用性对于实现2050年净零排放目标至关重要,然而研究人员质疑计划中的可再生能源网络扩张是否足以满足这一需求。在寻找制氢途径的过程中,阳极氧化反应(AORs)引起了催化界的广泛关注。然而,这些系统的研究大多是小规模的,缺乏对其商业应用的深入了解。为了弥补这一差距,我们假设AOR催化剂应该在更接近实际应用的条件下进一步开发和测试。我们从系统级的角度定义了这些应用程序,并提供了一个实用的框架,将复杂的环境转化为可以在学术湿实验室限制下测试的条件。拟议的框架还支持合作开发从AORs大规模供应氢气所需的伙伴技术(例如分离)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.50
自引率
6.40%
发文量
0
期刊介绍: Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信