{"title":"Gut bacteria of the fall armyworm, Spodoptera frugiperda, promote host resistance against the toxic effects of lufenuron","authors":"Qianqian Li, Renwen Zheng, Jinyuan Zhao, Sihan Lu, Yue Liu, Dongyan Huang, Jinhui Zhang, Lijuan Liu, Xin Zhou, Qingfeng Tang","doi":"10.1007/s10340-025-01908-z","DOIUrl":null,"url":null,"abstract":"<p>The fall armyworm, <i>Spodoptera frugiperda</i> (Lepidoptera: Noctuidae), is a highly polyphagous agricultural pest that seriously threatens food production and agricultural development. Lufenuron is widely used because of its good control effect and safety to nontarget organisms. However, due to the continuous application of lufenuron and the evolution of insect resistance mechanisms, the potential of <i>S. frugiperda</i> developing resistance to lufenuron is increasing. Insect gut bacteria play an important role in insecticide resistance. We established a germ-free (GF) rearing protocol and cultured monoassociated gnotobiotic <i>S. frugiperda</i> with 20 different bacteria to explore the possible mechanisms of gut bacteria resistance in insects. After the larvae were exposed to lufenuron, <i>Klebsiella</i> C3 was screened, which could significantly change the resistance of larvae to lufenuron. Moreover, chitin synthesis and metabolism in larvae fed with <i>Klebsiella</i> C3 were significantly affected. The liquid chromatography results showed that <i>Klebsiella</i> C3 could not directly degrade lufenuron. Nontargeted metabolomics analysis revealed that the intervention of <i>Klebsiella</i> C3 resulted in the production of different metabolites by <i>S. frugiperda</i>, which affected the associated metabolic pathways. These changes in substances may be responsible for the altered sensitivity of <i>S. frugiperda</i> to lufenuron. Taken together, our study investigated how intestinal bacteria influence the resistance of <i>S. frugiperda</i> against insecticides. This research offers new insights for developing preventive and control strategies against this key pest.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"29 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-025-01908-z","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), is a highly polyphagous agricultural pest that seriously threatens food production and agricultural development. Lufenuron is widely used because of its good control effect and safety to nontarget organisms. However, due to the continuous application of lufenuron and the evolution of insect resistance mechanisms, the potential of S. frugiperda developing resistance to lufenuron is increasing. Insect gut bacteria play an important role in insecticide resistance. We established a germ-free (GF) rearing protocol and cultured monoassociated gnotobiotic S. frugiperda with 20 different bacteria to explore the possible mechanisms of gut bacteria resistance in insects. After the larvae were exposed to lufenuron, Klebsiella C3 was screened, which could significantly change the resistance of larvae to lufenuron. Moreover, chitin synthesis and metabolism in larvae fed with Klebsiella C3 were significantly affected. The liquid chromatography results showed that Klebsiella C3 could not directly degrade lufenuron. Nontargeted metabolomics analysis revealed that the intervention of Klebsiella C3 resulted in the production of different metabolites by S. frugiperda, which affected the associated metabolic pathways. These changes in substances may be responsible for the altered sensitivity of S. frugiperda to lufenuron. Taken together, our study investigated how intestinal bacteria influence the resistance of S. frugiperda against insecticides. This research offers new insights for developing preventive and control strategies against this key pest.
期刊介绍:
Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues.
Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates.
Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management.
Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.