Manish Mohapatra, James Eric Carmichael, Kyle S. Smith, Matthijs A. A. van der Meer
{"title":"Optogenetic Mapping of Rhythmic Phase-Dependent Excitability in the Mouse Striatum","authors":"Manish Mohapatra, James Eric Carmichael, Kyle S. Smith, Matthijs A. A. van der Meer","doi":"10.1523/jneurosci.0218-24.2025","DOIUrl":null,"url":null,"abstract":"<p>The striatum is thought to switch flexibly between multiple converging inputs to support adaptive behavior. The \"communication through coherence\" (CTC) hypothesis is a potential mechanism to implement such a flexible switching. For CTC to work in the striatum, striatal excitability must show rhythmic fluctuations, such as those related to the phase of the striatal local field potential (LFP). To test this fundamental requirement, we delivered a constant input stimulus to ChR2-expressing striatal fast-spiking PV+ interneurons (FSIs) in head-fixed awake mice (PV-Cre:Ai-32, <I>n</I> = 18, 9 female) and determined whether the response to this stimulus varied with LFP phase. We found that approximately one-third (41.2%) of FSIs exhibited significant phase-dependent excitability in at least one LFP frequency band. Phase-dependent excitability was most prominent in the delta (2–5 Hz) frequency band, both in terms of prevalence (23.5% of FSIs sampled) and magnitude (phase modulation strength: 22% of average response). The most excitable phase tended to align with endogenous phase-locking, again most clearly in the delta band. These results bolster the functional relevance of the striatal field potential and spike-field relationships and provide proof-of-principle support for the possibility of CTC in the striatum.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":"116 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/jneurosci.0218-24.2025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The striatum is thought to switch flexibly between multiple converging inputs to support adaptive behavior. The "communication through coherence" (CTC) hypothesis is a potential mechanism to implement such a flexible switching. For CTC to work in the striatum, striatal excitability must show rhythmic fluctuations, such as those related to the phase of the striatal local field potential (LFP). To test this fundamental requirement, we delivered a constant input stimulus to ChR2-expressing striatal fast-spiking PV+ interneurons (FSIs) in head-fixed awake mice (PV-Cre:Ai-32, n = 18, 9 female) and determined whether the response to this stimulus varied with LFP phase. We found that approximately one-third (41.2%) of FSIs exhibited significant phase-dependent excitability in at least one LFP frequency band. Phase-dependent excitability was most prominent in the delta (2–5 Hz) frequency band, both in terms of prevalence (23.5% of FSIs sampled) and magnitude (phase modulation strength: 22% of average response). The most excitable phase tended to align with endogenous phase-locking, again most clearly in the delta band. These results bolster the functional relevance of the striatal field potential and spike-field relationships and provide proof-of-principle support for the possibility of CTC in the striatum.
期刊介绍:
JNeurosci (ISSN 0270-6474) is an official journal of the Society for Neuroscience. It is published weekly by the Society, fifty weeks a year, one volume a year. JNeurosci publishes papers on a broad range of topics of general interest to those working on the nervous system. Authors now have an Open Choice option for their published articles