Shaojun Lv, LeLe Tian, Shizhen Zhao, Kevin C. Jones, Duohong Chen, Guangcai Zhong, Jun Li, Buqing Xu, Ping’an Peng, Gan Zhang
{"title":"Aqueous secondary formation substantially contributes to hydrophilic organophosphate esters in aerosols","authors":"Shaojun Lv, LeLe Tian, Shizhen Zhao, Kevin C. Jones, Duohong Chen, Guangcai Zhong, Jun Li, Buqing Xu, Ping’an Peng, Gan Zhang","doi":"10.1038/s41467-025-59361-6","DOIUrl":null,"url":null,"abstract":"<p>Chemicals of emerging concern (CECs), like organophosphate esters (OPEs), are toxic substances threatening human and wildlife health. Yet the atmospheric transformation of CECs remains poorly understood. Here we combine field measurements and partitioning models to reveal that OPEs could be enhanced by aqueous-phase processes in aerosols. We show that hydrophobic OPEs are absorbed favorably into the organic phase, whereas hydrophilic OPEs preferably partition into the aqueous phase. We provide field evidence that enhanced aqueous secondary formation of OPEs occurs in winter, and its magnitude is strongly dependent on aerosol water content. We suggest that dissolved inorganic salts and transition metals in aerosols positively impact the formation of particle-bound hydrophilic OPEs, by facilitating aqueous partitioning and/or oxidation. Our findings highlight the important role of aqueous oxidation chemistry for the fate of CECs in the atmosphere, urging better consideration of transformation products in future risk assessment and chemical management.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59361-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Chemicals of emerging concern (CECs), like organophosphate esters (OPEs), are toxic substances threatening human and wildlife health. Yet the atmospheric transformation of CECs remains poorly understood. Here we combine field measurements and partitioning models to reveal that OPEs could be enhanced by aqueous-phase processes in aerosols. We show that hydrophobic OPEs are absorbed favorably into the organic phase, whereas hydrophilic OPEs preferably partition into the aqueous phase. We provide field evidence that enhanced aqueous secondary formation of OPEs occurs in winter, and its magnitude is strongly dependent on aerosol water content. We suggest that dissolved inorganic salts and transition metals in aerosols positively impact the formation of particle-bound hydrophilic OPEs, by facilitating aqueous partitioning and/or oxidation. Our findings highlight the important role of aqueous oxidation chemistry for the fate of CECs in the atmosphere, urging better consideration of transformation products in future risk assessment and chemical management.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.