A compact, wireless system for continuous monitoring of breast milk expressed during breastfeeding

IF 26.8 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Jihye Kim, Seyong Oh, Raudel Avila, Hee-Sup Shin, Matthew Banet, Jennifer Wicks, Anthony R. Banks, Yonggang Huang, Jae-Young Yoo, Daniel T. Robinson, Craig F. Garfield, John A. Rogers
{"title":"A compact, wireless system for continuous monitoring of breast milk expressed during breastfeeding","authors":"Jihye Kim, Seyong Oh, Raudel Avila, Hee-Sup Shin, Matthew Banet, Jennifer Wicks, Anthony R. Banks, Yonggang Huang, Jae-Young Yoo, Daniel T. Robinson, Craig F. Garfield, John A. Rogers","doi":"10.1038/s41551-025-01393-w","DOIUrl":null,"url":null,"abstract":"<p>Human milk is the ideal source of nutrition for infants. Most health organizations recommend direct breastfeeding from the first hour of life, extending throughout the first and second year. However, uncertainties regarding the volumes of milk ingested by the infant contribute to suboptimal rates of breastfeeding. Here we introduce a compact and unobtrusive device that gently interfaces to the breast via four electrodes and accurately measures expressed milk volume during breastfeeding through changes in the alternating current impedance. The data pass wirelessly to a smartphone continuously throughout each breastfeeding session for real-time graphical display. Comprehensive experimental and computational results establish the operating principles and guide engineering choices for optimized performance. Evaluations with 12 breastfeeding mothers over periods of as long as 17 weeks in the neonatal intensive care unit and in home settings illustrate the practical utility of this technology in addressing a critically important unmet need in maternal and neonatal care.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"68 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-025-01393-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Human milk is the ideal source of nutrition for infants. Most health organizations recommend direct breastfeeding from the first hour of life, extending throughout the first and second year. However, uncertainties regarding the volumes of milk ingested by the infant contribute to suboptimal rates of breastfeeding. Here we introduce a compact and unobtrusive device that gently interfaces to the breast via four electrodes and accurately measures expressed milk volume during breastfeeding through changes in the alternating current impedance. The data pass wirelessly to a smartphone continuously throughout each breastfeeding session for real-time graphical display. Comprehensive experimental and computational results establish the operating principles and guide engineering choices for optimized performance. Evaluations with 12 breastfeeding mothers over periods of as long as 17 weeks in the neonatal intensive care unit and in home settings illustrate the practical utility of this technology in addressing a critically important unmet need in maternal and neonatal care.

Abstract Image

一种紧凑的无线系统,用于持续监测母乳喂养期间分泌的乳汁
母乳是婴儿理想的营养来源。大多数卫生组织建议从生命的第一个小时开始直接母乳喂养,一直持续到第一年和第二年。然而,婴儿摄取量的不确定性导致母乳喂养率不理想。在这里,我们介绍了一种紧凑而不显眼的设备,它通过四个电极轻轻地连接到乳房上,并通过交流阻抗的变化准确地测量母乳喂养期间的泌乳量。在每次母乳喂养过程中,数据通过无线方式连续传输到智能手机,并进行实时图形显示。综合的实验和计算结果建立了优化性能的工作原理和指导工程选择。在新生儿重症监护病房和家庭环境中对12名母乳喂养母亲长达17周的评估表明,该技术在解决孕产妇和新生儿护理中一个至关重要的未满足需求方面具有实际效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Biomedical Engineering
Nature Biomedical Engineering Medicine-Medicine (miscellaneous)
CiteScore
45.30
自引率
1.10%
发文量
138
期刊介绍: Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信