Jihye Kim, Seyong Oh, Raudel Avila, Hee-Sup Shin, Matthew Banet, Jennifer Wicks, Anthony R. Banks, Yonggang Huang, Jae-Young Yoo, Daniel T. Robinson, Craig F. Garfield, John A. Rogers
{"title":"A compact, wireless system for continuous monitoring of breast milk expressed during breastfeeding","authors":"Jihye Kim, Seyong Oh, Raudel Avila, Hee-Sup Shin, Matthew Banet, Jennifer Wicks, Anthony R. Banks, Yonggang Huang, Jae-Young Yoo, Daniel T. Robinson, Craig F. Garfield, John A. Rogers","doi":"10.1038/s41551-025-01393-w","DOIUrl":null,"url":null,"abstract":"<p>Human milk is the ideal source of nutrition for infants. Most health organizations recommend direct breastfeeding from the first hour of life, extending throughout the first and second year. However, uncertainties regarding the volumes of milk ingested by the infant contribute to suboptimal rates of breastfeeding. Here we introduce a compact and unobtrusive device that gently interfaces to the breast via four electrodes and accurately measures expressed milk volume during breastfeeding through changes in the alternating current impedance. The data pass wirelessly to a smartphone continuously throughout each breastfeeding session for real-time graphical display. Comprehensive experimental and computational results establish the operating principles and guide engineering choices for optimized performance. Evaluations with 12 breastfeeding mothers over periods of as long as 17 weeks in the neonatal intensive care unit and in home settings illustrate the practical utility of this technology in addressing a critically important unmet need in maternal and neonatal care.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"68 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-025-01393-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Human milk is the ideal source of nutrition for infants. Most health organizations recommend direct breastfeeding from the first hour of life, extending throughout the first and second year. However, uncertainties regarding the volumes of milk ingested by the infant contribute to suboptimal rates of breastfeeding. Here we introduce a compact and unobtrusive device that gently interfaces to the breast via four electrodes and accurately measures expressed milk volume during breastfeeding through changes in the alternating current impedance. The data pass wirelessly to a smartphone continuously throughout each breastfeeding session for real-time graphical display. Comprehensive experimental and computational results establish the operating principles and guide engineering choices for optimized performance. Evaluations with 12 breastfeeding mothers over periods of as long as 17 weeks in the neonatal intensive care unit and in home settings illustrate the practical utility of this technology in addressing a critically important unmet need in maternal and neonatal care.
期刊介绍:
Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.