Dezhi Liu, Zhenli Zhang, Yu-Xia Zhang, Yue-Sheng Li, Dong-Po Song
{"title":"Bridging Nano to Micron: Architectural Engineering of Supramolecular Bottlebrushes for Extensively Tunable Structures and Photonics","authors":"Dezhi Liu, Zhenli Zhang, Yu-Xia Zhang, Yue-Sheng Li, Dong-Po Song","doi":"10.1002/anie.202503633","DOIUrl":null,"url":null,"abstract":"Supramolecular bottlebrush block copolymers (BBCPs) offer greater architectural adaptability than covalent BBCPs. However, the dynamic nature of non-covalent interactions hinders precise control over their chain architecture, resulting in poorly controlled self-assembly, unpredictable morphologies, and limited utility. Herein, we introduce a novel molecular design for amphiphilic supramolecular BBCPs that overcomes key challenges in the field. The resulting materials exhibit superior thermodynamic stability in weakly polar solvents. This enables the first demonstration of well-controlled self-assembly of supramolecular surfactants within a complex emulsion system, leading to the formation of photonic supraballs with homogenous porous structures. Critically, precise chain architectural engineering enables pore diameter tuning over an unprecedented nanometer-to-micrometer range (67 nm-1.92 µm), significantly surpassing the maximum domain sizes achievable with self-assembled covalent BBCPs. This extends the photonic bandgap into the mid-wave infrared range, paving the way for next-generation materials with potential applications in thermal management.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"28 1","pages":"e202503633"},"PeriodicalIF":16.1000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202503633","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Supramolecular bottlebrush block copolymers (BBCPs) offer greater architectural adaptability than covalent BBCPs. However, the dynamic nature of non-covalent interactions hinders precise control over their chain architecture, resulting in poorly controlled self-assembly, unpredictable morphologies, and limited utility. Herein, we introduce a novel molecular design for amphiphilic supramolecular BBCPs that overcomes key challenges in the field. The resulting materials exhibit superior thermodynamic stability in weakly polar solvents. This enables the first demonstration of well-controlled self-assembly of supramolecular surfactants within a complex emulsion system, leading to the formation of photonic supraballs with homogenous porous structures. Critically, precise chain architectural engineering enables pore diameter tuning over an unprecedented nanometer-to-micrometer range (67 nm-1.92 µm), significantly surpassing the maximum domain sizes achievable with self-assembled covalent BBCPs. This extends the photonic bandgap into the mid-wave infrared range, paving the way for next-generation materials with potential applications in thermal management.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.