{"title":"Predicting dementia in people with Parkinson’s disease","authors":"Mohamed Aborageh, Tom Hähnel, Patricia Martins Conde, Jochen Klucken, Holger Fröhlich","doi":"10.1038/s41531-025-00983-4","DOIUrl":null,"url":null,"abstract":"<p>Parkinson’s disease (PD) exhibits a variety of symptoms, with approximately 25% of patients experiencing mild cognitive impairment and 45% developing dementia within ten years of diagnosis. Predicting this progression and identifying its causes remains challenging. Our study utilizes machine learning and multimodal data from the UK Biobank to explore the predictability of Parkinson’s dementia (PDD) post-diagnosis, further validated by data from the Parkinson’s Progression Markers Initiative (PPMI) cohort. Using Shapley Additive Explanation (SHAP) and Bayesian Network structure learning, we analyzed interactions among genetic predisposition, comorbidities, lifestyle, and environmental factors. We concluded that genetic predisposition is the dominant factor, with significant influence from comorbidities. Additionally, we employed Mendelian randomization (MR) to establish potential causal links between hypertension, type 2 diabetes, and PDD, suggesting that managing blood pressure and glucose levels in Parkinson’s patients may serve as a preventive strategy. This study identifies risk factors for PDD and proposes avenues for prevention.</p>","PeriodicalId":19706,"journal":{"name":"NPJ Parkinson's Disease","volume":"43 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Parkinson's Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41531-025-00983-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Parkinson’s disease (PD) exhibits a variety of symptoms, with approximately 25% of patients experiencing mild cognitive impairment and 45% developing dementia within ten years of diagnosis. Predicting this progression and identifying its causes remains challenging. Our study utilizes machine learning and multimodal data from the UK Biobank to explore the predictability of Parkinson’s dementia (PDD) post-diagnosis, further validated by data from the Parkinson’s Progression Markers Initiative (PPMI) cohort. Using Shapley Additive Explanation (SHAP) and Bayesian Network structure learning, we analyzed interactions among genetic predisposition, comorbidities, lifestyle, and environmental factors. We concluded that genetic predisposition is the dominant factor, with significant influence from comorbidities. Additionally, we employed Mendelian randomization (MR) to establish potential causal links between hypertension, type 2 diabetes, and PDD, suggesting that managing blood pressure and glucose levels in Parkinson’s patients may serve as a preventive strategy. This study identifies risk factors for PDD and proposes avenues for prevention.
期刊介绍:
npj Parkinson's Disease is a comprehensive open access journal that covers a wide range of research areas related to Parkinson's disease. It publishes original studies in basic science, translational research, and clinical investigations. The journal is dedicated to advancing our understanding of Parkinson's disease by exploring various aspects such as anatomy, etiology, genetics, cellular and molecular physiology, neurophysiology, epidemiology, and therapeutic development. By providing free and immediate access to the scientific and Parkinson's disease community, npj Parkinson's Disease promotes collaboration and knowledge sharing among researchers and healthcare professionals.