Jian Xiao , Nana Feng , Qiushi Li , Xianghui Cao , Qingqing Huang , Biyu Zhou , Zhenrui Fan , Liping Wei , Yang Liu
{"title":"Mitochondria-specific GPX4 inhibition enhances ferroptosis and antitumor immunity","authors":"Jian Xiao , Nana Feng , Qiushi Li , Xianghui Cao , Qingqing Huang , Biyu Zhou , Zhenrui Fan , Liping Wei , Yang Liu","doi":"10.1016/j.jconrel.2025.113841","DOIUrl":null,"url":null,"abstract":"<div><div>Ferroptosis is gaining attention as a potential cancer immunotherapy strategy, as it can stimulate antitumor responses by enhancing dendritic cell (DC) activation and the infiltration of cytotoxic T cells (CTLs). However, cancer cells often develop resistance to ferroptosis, reducing the effectiveness of existing treatments. This study demonstrates a novel mitochondria-targeted ferroptosis inducer, designated mitoFePDA@R, which is engineered to achieve a “closed-loop” cancer immunotherapy strategy of ferroptosis induction, antitumor immune activation, and ferroptosis enhancement. In this strategy, mitoFePDA@R is designed to release Fe<sup>2+</sup> and the mitoGPX4 inhibitor RSL3 within tumor mitochondria, thereby effectively inducing ferroptosis and activating strong antitumor immune responses. Additionally, interferon <em>γ (</em>IFN-γ) released from CTLs inhibits GSH synthesis, which further enhances the ferroptosis sensitivity of tumor cells to form a “closed-loop” strategy. In vitro studies indicated that mitoFePDA@R induced strong ferroptosis in tumor cells by accumulating lipid peroxides (LPO) in mitochondria (which lacks mitochondria targeting). Animal studies confirmed that mitoFePDA@R effectively triggered ferroptosis and activated subsequent antitumor immune responses, leading to significant tumor growth inhibition. This provides a viable and effective strategy for ferroptosis-associated cancer immunotherapy.</div></div>","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":"383 ","pages":"Article 113841"},"PeriodicalIF":11.5000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168365925004614","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ferroptosis is gaining attention as a potential cancer immunotherapy strategy, as it can stimulate antitumor responses by enhancing dendritic cell (DC) activation and the infiltration of cytotoxic T cells (CTLs). However, cancer cells often develop resistance to ferroptosis, reducing the effectiveness of existing treatments. This study demonstrates a novel mitochondria-targeted ferroptosis inducer, designated mitoFePDA@R, which is engineered to achieve a “closed-loop” cancer immunotherapy strategy of ferroptosis induction, antitumor immune activation, and ferroptosis enhancement. In this strategy, mitoFePDA@R is designed to release Fe2+ and the mitoGPX4 inhibitor RSL3 within tumor mitochondria, thereby effectively inducing ferroptosis and activating strong antitumor immune responses. Additionally, interferon γ (IFN-γ) released from CTLs inhibits GSH synthesis, which further enhances the ferroptosis sensitivity of tumor cells to form a “closed-loop” strategy. In vitro studies indicated that mitoFePDA@R induced strong ferroptosis in tumor cells by accumulating lipid peroxides (LPO) in mitochondria (which lacks mitochondria targeting). Animal studies confirmed that mitoFePDA@R effectively triggered ferroptosis and activated subsequent antitumor immune responses, leading to significant tumor growth inhibition. This provides a viable and effective strategy for ferroptosis-associated cancer immunotherapy.
期刊介绍:
The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System.
Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries.
Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.