Impact of a large dominant pore and its location on ductility of thin-walled high-pressure die-cast magnesium

IF 15.8 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING
Kyoo Sil Choi, Xin Sun, Mei Li
{"title":"Impact of a large dominant pore and its location on ductility of thin-walled high-pressure die-cast magnesium","authors":"Kyoo Sil Choi, Xin Sun, Mei Li","doi":"10.1016/j.jma.2025.04.008","DOIUrl":null,"url":null,"abstract":"High-pressure die-cast (HPDC) magnesium (Mg) and aluminum alloys enable vehicle lightweighting while reducing manufacturing costs by simplifying part assembly. The increasing use of super-large castings in electric vehicles enhances structural reliability and cost efficiency. However, HPDC Mg alloys face challenges related to casting defects such as porosity, cold shuts, and oxides. These defects influence tensile strength and ductility, depending on their location and size. This study employs finite element (FE) modeling to investigate how a dominant large pore, its position, and the sample size affect the ductility of thin-walled HPDC Mg. Motivated by the ductility variations reported in literature and the experimental findings on AM60 castings, synthetic microstructure-based models are used to assess the effects of different pore sizes and locations. The results indicate the presence of three different regions based on the large pore size and model size: 1) a region dominated by the effects of the large pore, 2) a plateau region dominated by pore interactions, and 3) a transient region between these two effects. A threshold distance from the sample edge (<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;d&lt;/mi&gt;&lt;mo is=\"true\"&gt;&amp;#x2248;&lt;/mo&gt;&lt;mn is=\"true\"&gt;0.9&lt;/mn&gt;&lt;msqrt is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;D&lt;/mi&gt;&lt;mo is=\"true\"&gt;&amp;#xB7;&lt;/mo&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;/msqrt&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.779ex\" role=\"img\" style=\"vertical-align: -0.466ex;\" viewbox=\"0 -995.6 6116.5 1196.3\" width=\"14.206ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-64\"></use></g><g is=\"true\" transform=\"translate(834,0)\"><use xlink:href=\"#MJMAIN-2248\"></use></g><g is=\"true\" transform=\"translate(1890,0)\"><use xlink:href=\"#MJMAIN-30\"></use><use x=\"500\" xlink:href=\"#MJMAIN-2E\" y=\"0\"></use><use x=\"779\" xlink:href=\"#MJMAIN-39\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(3170,0)\"><use x=\"0\" xlink:href=\"#MJMAIN-221A\" y=\"64\"></use><rect height=\"60\" stroke=\"none\" width=\"2112\" x=\"833\" y=\"805\"></rect><g transform=\"translate(833,0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-44\"></use></g><g is=\"true\" transform=\"translate(986,0)\"><use xlink:href=\"#MJMAIN-22C5\"></use></g><g is=\"true\" transform=\"translate(1487,0)\"><use xlink:href=\"#MJMAIN-4C\"></use></g></g></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">d</mi><mo is=\"true\">≈</mo><mn is=\"true\">0.9</mn><msqrt is=\"true\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">D</mi><mo is=\"true\">·</mo><mi is=\"true\" mathvariant=\"normal\">L</mi></mrow></msqrt></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">d</mi><mo is=\"true\">≈</mo><mn is=\"true\">0.9</mn><msqrt is=\"true\"><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">D</mi><mo is=\"true\">·</mo><mi mathvariant=\"normal\" is=\"true\">L</mi></mrow></msqrt></mrow></math></script></span>) is proposed, within which a large pore can significantly reduce ductility. Additionally, large pores near edges contribute to ductility variations in Mg castings.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"114 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2025.04.008","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

High-pressure die-cast (HPDC) magnesium (Mg) and aluminum alloys enable vehicle lightweighting while reducing manufacturing costs by simplifying part assembly. The increasing use of super-large castings in electric vehicles enhances structural reliability and cost efficiency. However, HPDC Mg alloys face challenges related to casting defects such as porosity, cold shuts, and oxides. These defects influence tensile strength and ductility, depending on their location and size. This study employs finite element (FE) modeling to investigate how a dominant large pore, its position, and the sample size affect the ductility of thin-walled HPDC Mg. Motivated by the ductility variations reported in literature and the experimental findings on AM60 castings, synthetic microstructure-based models are used to assess the effects of different pore sizes and locations. The results indicate the presence of three different regions based on the large pore size and model size: 1) a region dominated by the effects of the large pore, 2) a plateau region dominated by pore interactions, and 3) a transient region between these two effects. A threshold distance from the sample edge (d0.9D·L) is proposed, within which a large pore can significantly reduce ductility. Additionally, large pores near edges contribute to ductility variations in Mg castings.

Abstract Image

大孔隙及其位置对薄壁高压压铸镁塑性的影响
高压压铸(HPDC)镁(Mg)和铝合金使汽车轻量化,同时通过简化零件装配降低制造成本。越来越多的超大型铸件在电动汽车上的应用提高了结构的可靠性和成本效率。然而,HPDC镁合金面临着与铸造缺陷相关的挑战,如气孔、冷闭和氧化物。这些缺陷影响拉伸强度和延展性,取决于它们的位置和尺寸。本研究采用有限元(FE)模型研究了优势大孔、其位置和样本量如何影响薄壁HPDC Mg的延性。基于文献报道的塑性变化和AM60铸件的实验结果,本文采用基于合成微观结构的模型来评估不同孔隙大小和位置的影响。结果表明,基于大孔隙大小和模型尺寸,存在3个不同的区域:1)以大孔隙作用为主的区域,2)以孔隙相互作用为主的高原区域,以及3)介于这两种作用之间的过渡区域。提出了一个距离试样边缘的阈值距离(d≈0.9D·Ld≈0.9D·L),在该阈值范围内,较大的孔隙会显著降低试样的延性。此外,镁合金铸件边缘处的大孔隙导致了铸件的延展性变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Magnesium and Alloys
Journal of Magnesium and Alloys Engineering-Mechanics of Materials
CiteScore
20.20
自引率
14.80%
发文量
52
审稿时长
59 days
期刊介绍: The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信