Hiroyuki Uechi, Sindhuja Sridharan, Jik Nijssen, Jessica Bilstein, Juan M. Iglesias-Artola, Satoshi Kishigami, Virginia Casablancas-Antras, Ina Poser, Eduardo J. Martinez, Edgar Boczek, Michael Wagner, Nadine Tomschke, António M. de Jesus Domingues, Arun Pal, Thom Doeleman, Sukhleen Kour, Eric Nathaniel Anderson, Frank Stein, Hyun O. Lee, Xiaojie Zhang, Anatol W. Fritsch, Marcus Jahnel, Julius Fürsch, Anastasia C. Murthy, Simon Alberti, Marc Bickle, Nicolas L. Fawzi, André Nadler, Della C. David, Udai B. Pandey, Andreas Hermann, Florian Stengel, Benjamin G. Davis, Andrew J. Baldwin, Mikhail M. Savitski, Anthony A. Hyman, Richard J. Wheeler
{"title":"Small-molecule dissolution of stress granules by redox modulation benefits ALS models","authors":"Hiroyuki Uechi, Sindhuja Sridharan, Jik Nijssen, Jessica Bilstein, Juan M. Iglesias-Artola, Satoshi Kishigami, Virginia Casablancas-Antras, Ina Poser, Eduardo J. Martinez, Edgar Boczek, Michael Wagner, Nadine Tomschke, António M. de Jesus Domingues, Arun Pal, Thom Doeleman, Sukhleen Kour, Eric Nathaniel Anderson, Frank Stein, Hyun O. Lee, Xiaojie Zhang, Anatol W. Fritsch, Marcus Jahnel, Julius Fürsch, Anastasia C. Murthy, Simon Alberti, Marc Bickle, Nicolas L. Fawzi, André Nadler, Della C. David, Udai B. Pandey, Andreas Hermann, Florian Stengel, Benjamin G. Davis, Andrew J. Baldwin, Mikhail M. Savitski, Anthony A. Hyman, Richard J. Wheeler","doi":"10.1038/s41589-025-01893-5","DOIUrl":null,"url":null,"abstract":"<p>Neurodegenerative diseases, such as amyotrophic lateral sclerosis, are often associated with mutations in stress granule proteins. Aberrant stress granule condensate formation is associated with disease, making it a potential target for pharmacological intervention. Here, we identified lipoamide, a small molecule that specifically prevents cytoplasmic condensation of stress granule proteins. Thermal proteome profiling showed that lipoamide stabilizes intrinsically disordered domain-containing proteins, including SRSF1 and SFPQ, which are stress granule proteins necessary for lipoamide activity. SFPQ has redox-state-specific condensate dissolving behavior, which is modulated by the redox-active lipoamide dithiolane ring. In animals, lipoamide ameliorates aging-associated aggregation of a stress granule reporter protein, improves neuronal morphology and recovers motor defects caused by amyotrophic lateral sclerosis-associated FUS and TDP-43 mutants. Thus, lipoamide is a well-tolerated small-molecule modulator of stress granule condensation, and dissection of its molecular mechanism identified a cellular pathway for redox regulation of stress granule formation.</p><figure></figure>","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":"116 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41589-025-01893-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neurodegenerative diseases, such as amyotrophic lateral sclerosis, are often associated with mutations in stress granule proteins. Aberrant stress granule condensate formation is associated with disease, making it a potential target for pharmacological intervention. Here, we identified lipoamide, a small molecule that specifically prevents cytoplasmic condensation of stress granule proteins. Thermal proteome profiling showed that lipoamide stabilizes intrinsically disordered domain-containing proteins, including SRSF1 and SFPQ, which are stress granule proteins necessary for lipoamide activity. SFPQ has redox-state-specific condensate dissolving behavior, which is modulated by the redox-active lipoamide dithiolane ring. In animals, lipoamide ameliorates aging-associated aggregation of a stress granule reporter protein, improves neuronal morphology and recovers motor defects caused by amyotrophic lateral sclerosis-associated FUS and TDP-43 mutants. Thus, lipoamide is a well-tolerated small-molecule modulator of stress granule condensation, and dissection of its molecular mechanism identified a cellular pathway for redox regulation of stress granule formation.
期刊介绍:
Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision.
The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms.
Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.