Evolution of warming tolerance alters physiology and life history traits in zebrafish

IF 29.6 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Anna H. Andreassen, Jeff C. Clements, Rachael Morgan, Davide Spatafora, Moa Metz, Eirik R. Åsheim, Christophe Pélabon, Fredrik Jutfelt
{"title":"Evolution of warming tolerance alters physiology and life history traits in zebrafish","authors":"Anna H. Andreassen, Jeff C. Clements, Rachael Morgan, Davide Spatafora, Moa Metz, Eirik R. Åsheim, Christophe Pélabon, Fredrik Jutfelt","doi":"10.1038/s41558-025-02332-y","DOIUrl":null,"url":null,"abstract":"<p>Evolution of warming tolerance may help species resist the impacts of climate change but can also lead to negative fitness outcomes. Identifying correlated responses to warming tolerance evolution could identify such negative consequences and help uncover the underlying mechanisms. By assessing the correlated responses of life history and physiological traits to seven generations of artificial selection to increase or decrease the acute upper thermal tolerance limit (CT<sub>max</sub>) in zebrafish (<i>Danio rerio</i>), we show that warming-adapted lines have improved cooling tolerance. Furthermore, the absence of difference between selected lines in aerobic metabolic scope, brain heat shock protein levels, fecundity, growth or swimming speed contradicts several hypotheses concerning the mechanisms controlling acute warming tolerance. These results suggest that selection due to acute heating events does not target variation in metabolic rates but can benefit tolerance to cold, making individuals more resilient to extreme temperature events.</p>","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"116 1","pages":""},"PeriodicalIF":29.6000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Climate Change","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41558-025-02332-y","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Evolution of warming tolerance may help species resist the impacts of climate change but can also lead to negative fitness outcomes. Identifying correlated responses to warming tolerance evolution could identify such negative consequences and help uncover the underlying mechanisms. By assessing the correlated responses of life history and physiological traits to seven generations of artificial selection to increase or decrease the acute upper thermal tolerance limit (CTmax) in zebrafish (Danio rerio), we show that warming-adapted lines have improved cooling tolerance. Furthermore, the absence of difference between selected lines in aerobic metabolic scope, brain heat shock protein levels, fecundity, growth or swimming speed contradicts several hypotheses concerning the mechanisms controlling acute warming tolerance. These results suggest that selection due to acute heating events does not target variation in metabolic rates but can benefit tolerance to cold, making individuals more resilient to extreme temperature events.

Abstract Image

温耐受性的进化改变了斑马鱼的生理和生活史特征
变暖耐受性的进化可能有助于物种抵御气候变化的影响,但也可能导致负面的适应性结果。识别对变暖耐受性进化的相关反应可以识别这些负面后果,并有助于揭示潜在的机制。通过评估斑马鱼(Danio rerio)的生活史和生理性状对7代人工选择增加或降低急性热耐受性上限(CTmax)的相关响应,我们发现暖化系具有更高的冷耐受性。此外,在有氧代谢范围、脑热休克蛋白水平、繁殖能力、生长或游泳速度等方面,选择的品系之间没有差异,这与有关控制急性温暖耐受性机制的几个假设相矛盾。这些结果表明,急性加热事件导致的选择并不是针对代谢率的变化,而是有利于对寒冷的耐受性,使个体更能适应极端温度事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Climate Change
Nature Climate Change ENVIRONMENTAL SCIENCES-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
40.30
自引率
1.60%
发文量
267
审稿时长
4-8 weeks
期刊介绍: Nature Climate Change is dedicated to addressing the scientific challenge of understanding Earth's changing climate and its societal implications. As a monthly journal, it publishes significant and cutting-edge research on the nature, causes, and impacts of global climate change, as well as its implications for the economy, policy, and the world at large. The journal publishes original research spanning the natural and social sciences, synthesizing interdisciplinary research to provide a comprehensive understanding of climate change. It upholds the high standards set by all Nature-branded journals, ensuring top-tier original research through a fair and rigorous review process, broad readership access, high standards of copy editing and production, rapid publication, and independence from academic societies and other vested interests. Nature Climate Change serves as a platform for discussion among experts, publishing opinion, analysis, and review articles. It also features Research Highlights to highlight important developments in the field and original reporting from renowned science journalists in the form of feature articles. Topics covered in the journal include adaptation, atmospheric science, ecology, economics, energy, impacts and vulnerability, mitigation, oceanography, policy, sociology, and sustainability, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信