Xin Yuan, Michael T. Bender, Myohwa Ko, Kyoung-Shin Choi
{"title":"Understanding two voltammetric features of water reduction and water oxidation in mild pH solutions","authors":"Xin Yuan, Michael T. Bender, Myohwa Ko, Kyoung-Shin Choi","doi":"10.1038/s41929-025-01339-0","DOIUrl":null,"url":null,"abstract":"<p>Electrification of many processes requires the use of aqueous solutions under mild pH conditions where the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) can become competing reactions. The HER and OER under mild pH conditions show peculiar voltammetric behaviours, specifically two reductive or oxidative features, that are not observed in strongly acidic and basic solutions. These behaviours cannot be fully explained by thermodynamic considerations only and are particularly complex owing to the involvement of multiple water species (H<sub>3</sub>O<sup>+</sup>, H<sub>2</sub>O and OH<sup>–</sup>) and the conversion between these species via water autodissociation and acid–base neutralization reactions. This Analysis provides a systematic and conceptual explanation of the effect of pH, potential, stirring and buffer on the thermodynamics and kinetics of the HER and OER, providing fundamental and yet essential insights into comprehending HER and OER behaviours under mild pH conditions, and their implications for other aqueous reactions more broadly.</p><figure></figure>","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"72 1","pages":""},"PeriodicalIF":42.8000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41929-025-01339-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Electrification of many processes requires the use of aqueous solutions under mild pH conditions where the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) can become competing reactions. The HER and OER under mild pH conditions show peculiar voltammetric behaviours, specifically two reductive or oxidative features, that are not observed in strongly acidic and basic solutions. These behaviours cannot be fully explained by thermodynamic considerations only and are particularly complex owing to the involvement of multiple water species (H3O+, H2O and OH–) and the conversion between these species via water autodissociation and acid–base neutralization reactions. This Analysis provides a systematic and conceptual explanation of the effect of pH, potential, stirring and buffer on the thermodynamics and kinetics of the HER and OER, providing fundamental and yet essential insights into comprehending HER and OER behaviours under mild pH conditions, and their implications for other aqueous reactions more broadly.
期刊介绍:
Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry.
Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.